EAGER: A Framework for Learning Graph Algorithms with Applications to Social and Gene Networks
EAGER:学习图算法及其在社交和基因网络中的应用的框架
基本信息
- 批准号:1841351
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many real world applications, such as discovering gene interaction networks, detecting fraud in financial networks and personalizing recommendations in social networks, involve NP-hard graph problems. Typically, approximation or heuristic algorithms designed for these problems rely heavily on manually specified structural information of graphs. Furthermore, previous graph algorithms seldom systematically exploit a common trait of industrial graph problems: instances of the same type of problem need to be solved repeatedly on a regular basis, and algorithms which are effective on average are more preferable than those with only a worst case guarantee. This project explores a novel deep learning framework for automating the design of algorithms for challenging graph problems. The framework delegates difficult choices during the design to deep learning models, and uses a distribution of problem instances to train effective graph algorithms. The project presents a paradigm shift in graph algorithm design, and results in a software package to disseminate the research. The project also involves a broader swath of students including undergraduates and underrepresented minorities through multiple existing summer research internship programs that target students nationwide.More specifically, the framework casts a graph algorithm as a composition of many small learnable operators either because it works on graph inputs, produces structured outputs, or the computation graph of the algorithm itself contains structures such as branches and recursions. Instead of specifying each operator manually as in traditional algorithm design, the framework parameterizes these operators using nonlinear embeddings, and learns them jointly from graph input and output pairs using supervised learning or reinforcement learning. Though demonstrated in specific gene and social networks, the framework is generic and broadly applicable to a large class of graph analysis problems appearing in a diverse range of real world applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多真实的应用,如发现基因交互网络,检测金融网络中的欺诈行为以及社交网络中的个性化推荐,都涉及NP-难图问题。 通常,为这些问题设计的近似或启发式算法严重依赖于手动指定的图的结构信息。此外,以前的图算法很少系统地利用工业图问题的一个共同特点:同一类型的问题的实例需要定期重复解决,并且平均有效的算法比那些只有最坏情况保证的算法更可取。 该项目探索了一种新的深度学习框架,用于自动设计具有挑战性的图问题的算法。 该框架将设计过程中的困难选择委托给深度学习模型,并使用问题实例的分布来训练有效的图算法。该项目提出了一个图形算法设计的范式转变,并导致在一个软件包传播的研究。 该项目还涉及更广泛的学生,包括本科生和代表性不足的少数民族,通过多个现有的暑期研究实习计划,针对全国各地的学生。更具体地说,该框架将图算法转换为许多小的可学习运算符的组合,因为它对图输入起作用,产生结构化输出,或者算法本身的计算图包含诸如分支和递归的结构。与传统算法设计中手动指定每个算子不同,该框架使用非线性嵌入来参数化这些算子,并使用监督学习或强化学习从图输入和输出对中联合学习它们。虽然在特定的基因和社交网络中得到了证明,但该框架是通用的,广泛适用于出现在各种真实的世界application.This奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
GLAD: Learning Sparse Graph Recovery
- DOI:
- 发表时间:2019-06
- 期刊:
- 影响因子:0
- 作者:H. Shrivastava;Xinshi Chen;Binghong Chen;Guanghui Lan;Srinvas Aluru;Le Song
- 通讯作者:H. Shrivastava;Xinshi Chen;Binghong Chen;Guanghui Lan;Srinvas Aluru;Le Song
GRNUlar: A Deep Learning Framework for Recovering Single-Cell Gene Regulatory Networks
GRNUlar:用于恢复单细胞基因调控网络的深度学习框架
- DOI:10.1089/cmb.2021.0437
- 发表时间:2022
- 期刊:
- 影响因子:1.7
- 作者:Shrivastava, Harsh;Zhang, Xiuwei;Song, Le;Aluru, Srinivas
- 通讯作者:Aluru, Srinivas
Molecule optimization by explainable evolution
通过可解释的进化进行分子优化
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Chen, Binghong;Wang, Tianzhe;Li, Chengtao;Dai, Hanjun;Song, Le
- 通讯作者:Song, Le
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Srinivas Aluru其他文献
Reply to: “Re-evaluating the evidence for a universal genetic boundary among microbial species”
回复:“重新评估微生物物种间通用遗传边界的证据”
- DOI:
10.1038/s41467-021-24129-1 - 发表时间:
2021-07-07 - 期刊:
- 影响因子:15.700
- 作者:
Luis M. Rodriguez-R;Chirag Jain;Roth E. Conrad;Srinivas Aluru;Konstantinos T. Konstantinidis - 通讯作者:
Konstantinos T. Konstantinidis
Distribution-Independent Hierarchical Algorithms for the N-body Problem
- DOI:
10.1023/a:1008047806690 - 发表时间:
1998-01-01 - 期刊:
- 影响因子:2.700
- 作者:
Srinivas Aluru;John Gustafson;G.M. Prabhu;Fatih E. Sevilgen - 通讯作者:
Fatih E. Sevilgen
A Parallel Monte Carlo Algorithm for Protein Accessible Surface Area Computation
蛋白质可及表面积计算的并行蒙特卡罗算法
- DOI:
10.1007/978-3-540-46642-0_49 - 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Srinivas Aluru;D. Ranjan;N. Futamura - 通讯作者:
N. Futamura
Srinivas Aluru的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Srinivas Aluru', 18)}}的其他基金
A scalable integrated multi-modal single cell analysis framework for gene regulatory and cell-cell interaction networks
用于基因调控和细胞间相互作用网络的可扩展集成多模式单细胞分析框架
- 批准号:
2233887 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
BD Hubs: Collaborative Proposal: SOUTH:The South Big Data Innovation Hub
BD Hubs:合作提案:SOUTH:南方大数据创新中心
- 批准号:
1916589 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Cooperative Agreement
AF: Small: Algorithmic Techniques for High-throughput Analysis of Long Reads
AF:小:长读长高通量分析的算法技术
- 批准号:
1816027 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
MRI: Acquisition of an HPC System for Data-Driven Discovery in Computational Astrophysics, Biology, Chemistry, and Materials Science
MRI:获取 HPC 系统,用于计算天体物理学、生物学、化学和材料科学中的数据驱动发现
- 批准号:
1828187 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Big Data Regional Innovation Hubs and Spokes Workshop
大数据区域创新中心和辐射研讨会
- 批准号:
1736154 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
SHF:Small: Reproducibility and Comprehensive Assessment of Next Generation Sequencing Bioinformatics Software
SHF:Small:下一代测序生物信息学软件的重现性和综合评估
- 批准号:
1718479 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
AF: Medium: Collaborative Research: Sequential and Parallel Algorithms for Approximate Sequence Matching with Applications to Computational Biology
AF:媒介:协作研究:近似序列匹配的顺序和并行算法及其在计算生物学中的应用
- 批准号:
1704552 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
BD Hubs: Collaborative Proposal: SOUTH: A Big Data Innovation Hub for the South Region
BD 中心:合作提案:SOUTH:南部地区的大数据创新中心
- 批准号:
1550305 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Exploratory Research on the Micron Automata Processor
EAGER:微米自动机处理器的探索性研究
- 批准号:
1448333 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Towards high-performance flexible transcription factor-DNA docking
合作研究:ABI 创新:迈向高性能灵活的转录因子-DNA 对接
- 批准号:
1356065 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似海外基金
Integrating Self-Regulated Learning Into STEM Courses: Maximizing Learning Outcomes With The Success Through Self-Regulated Learning Framework
将自我调节学习融入 STEM 课程:通过自我调节学习框架取得成功,最大化学习成果
- 批准号:
2337176 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CRII: OAC: A Compressor-Assisted Collective Communication Framework for GPU-Based Large-Scale Deep Learning
CRII:OAC:基于 GPU 的大规模深度学习的压缩器辅助集体通信框架
- 批准号:
2348465 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331710 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331711 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: A Semiconductor Curriculum and Learning Framework for High-Schoolers Using Artificial Intelligence, Game Modules, and Hands-on Experiences
协作研究:利用人工智能、游戏模块和实践经验为高中生提供半导体课程和学习框架
- 批准号:
2342747 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Towards an Explainable, Efficient, and Reliable Federated Learning Framework: A Solution for Data Heterogeneity
迈向可解释、高效、可靠的联邦学习框架:数据异构性的解决方案
- 批准号:
24K20848 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERI: A Machine Learning Framework for Preventing Cracking in Semiconductor Materials
ERI:防止半导体材料破裂的机器学习框架
- 批准号:
2347035 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
An Explanatory Machine Learning Framework for Teacher Effectiveness in STEM Education
STEM 教育中教师效能的解释性机器学习框架
- 批准号:
2321191 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Towards Trustworthy Machine Learning via Learning Trustworthy Representations: An Information-Theoretic Framework
职业:通过学习可信表示实现可信机器学习:信息理论框架
- 批准号:
2339686 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CAREER: From Dirty Data to Fair Prediction: Data Preparation Framework for End-to-End Equitable Machine Learning
职业:从脏数据到公平预测:端到端公平机器学习的数据准备框架
- 批准号:
2341055 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant