MRI: Development of a Long-range Airborne Snow and Sea Ice Thickness Observing System (LASSITOS)

MRI:开发远程机载雪和海冰厚度观测系统(LASSITOS)

基本信息

  • 批准号:
    1828743
  • 负责人:
  • 金额:
    $ 161.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-15 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Accurate knowledge of sea ice thickness over large scales is crucial for understanding the current and future states of the Arctic ice cover, and for near- and long-term predictions of Arctic marine environments. With the Arctic ice pack undergoing a major transition from perennial to seasonal ice, ice thickness - more so than ice extent - is a key variable describing the state and evolution of the ice-ocean system. However, methods of observing sea ice thickness at regional or basin scales with sufficient accuracy and resolution to capture growth and melt processes, detect hazards, or assess habitat quality are lacking. This project will develop an Airborne electromagnetic (AEM) snow radar system capable of being integrated into long-range Unmanned Aerial Systems (UAS). This will allow acquisition of basin-scale ice thickness and snow depth data as part of a network for Arctic observations that addresses information needs of researchers, local communities and industry. This MRI development project will contribute to NSF's Navigating the New Arctic Big Idea. AEM methods offer a novel means of measuring sea ice thickness over the full range of thicknesses found in the Polar Regions. By remotely sensing the positions of the upper and lower surfaces of the ice cover, AEM measurements typically achieve an accuracy of better than 10% of the total thickness, with less sensitivity to uncertainties in snow cover or sea surface topography. Development and commissioning of the Long-range Airborne Snow and Sea Ice Thickness Observing System (LASSITOS) will also provide opportunities for education and training, including capstone projects for the University of Alaska Fairbanks' new minor in aeronautical engineering and student involvement in comprehensive calibration/validation field activities. LASSITOS is expected to generate interest among native students from coastal villages in northern Alaska, who represent another key stakeholder group for sea ice information. The leader of this project is an early-career researcher.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
准确了解大尺度海冰厚度对于了解北极冰盖的当前和未来状态以及北极海洋环境的近期和长期预测至关重要。随着北极冰层经历从常年冰向季节性冰的重大转变,冰厚度(比冰范围更重要)是描述冰海系统状态和演化的关键变量。然而,缺乏以足够的精度和分辨率观测区域或盆地尺度海冰厚度的方法,以捕获生长和融化过程、检测危险或评估栖息地质量。该项目将开发能够集成到远程无人机系统(UAS)中的机载电磁(AEM)雪雷达系统。这将允许获取盆地规模的冰厚度和雪深度数据,作为北极观测网络的一部分,满足研究人员、当地社区和行业的信息需求。该 MRI 开发项目将为 NSF 的导航新北极大构想做出贡献。 AEM 方法提供了一种测量极地地区所有厚度范围内海冰厚度的新颖方法。通过遥感冰盖上表面和下表面的位置,AEM 测量的精度通常优于总厚度的 10%,对雪盖或海面地形的不确定性的敏感性较低。远程机载雪和海冰厚度观测系统(LASSITOS)的开发和调试还将提供教育和培训机会,包括阿拉斯加大学费尔班克斯分校新辅修航空工程的顶点项目以及学生参与综合校准/验证现场活动。 LASSITOS 预计会引起来自阿拉斯加北部沿海村庄的本地学生的兴趣,他们代表了海冰信息的另一个关键利益相关群体。该项目的领导者是一位职业生涯早期的研究人员。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Mahoney其他文献

Readmission after shoulder arthroplasty
  • DOI:
    10.1016/j.jse.2013.08.007
  • 发表时间:
    2014-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Andrew Mahoney;Joseph A. Bosco;Joseph D. Zuckerman
  • 通讯作者:
    Joseph D. Zuckerman

Andrew Mahoney的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Mahoney', 18)}}的其他基金

EAGER: Collaborative Research: Monitoring Nearshore Ice and Closing the Arctic Tide-gauge Gap with GNSS-Reflectometry (MONICA)
EAGER:合作研究:利用 GNSS 反射测量监测近岸冰层并缩小北极潮位间隙 (MONICA)
  • 批准号:
    2321314
  • 财政年份:
    2023
  • 资助金额:
    $ 161.54万
  • 项目类别:
    Continuing Grant
NNA Track 1: Collaborative Research: ARC-NAV: Arctic Robust Communities-Navigating Adaptation to Variability
NNA 轨道 1:合作研究:ARC-NAV:北极稳健社区 - 导航适应变化
  • 批准号:
    1928259
  • 财政年份:
    2019
  • 资助金额:
    $ 161.54万
  • 项目类别:
    Standard Grant
NNA Track 2: Collaborative Research: Planning for Climate Resiliency Amid Changing Culture, Technology, Economics, and Governance
NNA 轨道 2:合作研究:在不断变化的文化、技术、经济和治理中规划气候适应能力
  • 批准号:
    1928248
  • 财政年份:
    2019
  • 资助金额:
    $ 161.54万
  • 项目类别:
    Standard Grant
CDI-Type I: Collaborative Research: A Computational Thinking Approach to Mapping Critical Marine Mammal Habitat Through Readily-Deployable Video Systems
CDI-I 型:协作研究:通过易于部署的视频系统绘制关键海洋哺乳动物栖息地的计算思维方法
  • 批准号:
    1125040
  • 财政年份:
    2011
  • 资助金额:
    $ 161.54万
  • 项目类别:
    Standard Grant

相似国自然基金

水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
  • 批准号:
    32070202
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

Development of a long-term thermochemical energy storage system with simutaneous high heat power and storage density by utilizating a moving bed reactor based on nano coated salt hydrates
利用基于纳米涂层盐水合物的移动床反应器开发同时具有高热功率和存储密度的长期热化学储能系统
  • 批准号:
    24K08316
  • 财政年份:
    2024
  • 资助金额:
    $ 161.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Japan Sepsis Data Bank and analysis of factors associated with long-term outcomes in sepsis
日本脓毒症数据库的开发以及与脓毒症长期结果相关的因素分析
  • 批准号:
    23K09618
  • 财政年份:
    2023
  • 资助金额:
    $ 161.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of motion picture recording and measurement technique of femtosecond light pulse propagation with ultrahigh-temporal resolution and long recordable time and its application
超高时间分辨率、长记录时间的飞秒光脉冲传播运动图像记录与测量技术开发及应用
  • 批准号:
    23H01422
  • 财政年份:
    2023
  • 资助金额:
    $ 161.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
SBIR Phase I: Development of Fire-Safe and Low-Cost Flow Batteries using New Membranes for Long-Duration Energy Storage
SBIR 第一阶段:使用新型膜开发防火且低成本的液流电池,用于长期储能
  • 批准号:
    2212748
  • 财政年份:
    2023
  • 资助金额:
    $ 161.54万
  • 项目类别:
    Standard Grant
Development of sustained release/long acting products for TB
开发结核病缓释/长效产品
  • 批准号:
    10989407
  • 财政年份:
    2023
  • 资助金额:
    $ 161.54万
  • 项目类别:
Development of lipid/polymer hybrid nanoparticles for long-size DNA delivery
开发用于长尺寸 DNA 递送的脂质/聚合物混合纳米颗粒
  • 批准号:
    23H03719
  • 财政年份:
    2023
  • 资助金额:
    $ 161.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of a new bone augmentation method that enables long-term survival and long-term functional expression of transplanted cells by antioxidants
开发一种新的骨增强方法,通过抗氧化剂使移植细胞能够长期存活和长期功能表达
  • 批准号:
    23K09272
  • 财政年份:
    2023
  • 资助金额:
    $ 161.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a new dementia care model in Integrated facility for medical and long-term care
在医疗和长期护理综合设施中开发新的痴呆症护理模式
  • 批准号:
    23K10266
  • 财政年份:
    2023
  • 资助金额:
    $ 161.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of multi omics data analysis method using short/long read integration and complete human reference sequences
使用短/长读长集成和完整的人类参考序列开发多组学数据分析方法
  • 批准号:
    23K11300
  • 财政年份:
    2023
  • 资助金额:
    $ 161.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a long-term water resources forecasting model using global climate big data
利用全球气候大数据开发长期水资源预测模型
  • 批准号:
    23KJ0924
  • 财政年份:
    2023
  • 资助金额:
    $ 161.54万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了