NRT-HDR: Modeling and Understanding Human Behavior: Harnessing Data from Genes to Social Networks
NRT-HDR:建模和理解人类行为:利用从基因到社交网络的数据
基本信息
- 批准号:1829071
- 负责人:
- 金额:$ 300万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A confluence of technologies is transforming the biological, environmental, and social sciences into data-intensive sciences. Indeed, with the data now produced every day, there exists an unprecedented opportunity to revolutionize the journey of scientific discovery. By harnessing these data, one can advance the understanding of human conditions, behaviors, and their underlying mechanisms and social outcomes, enabling a spectrum of new and transformative research and practice. Fundamental new approaches across computing, mathematics, engineering, and sciences are critically needed, and future scientists must be accordingly trained in these emergent cutting-edge methods. This National Science Foundation Research Traineeship (NRT) award to the University of California, Los Angeles will address this demand by training graduate students at the intersections of data science, mathematics, cryptography, artificial intelligence, genomics, behavior science, and social science. The traineeship program anticipates training one hundred twenty (120) PhD students, including fifty (50) funded trainees, from the social, biological, mathematical and computational sciences and engineering, through a unique and comprehensive training opportunity. This cross-disciplinary traineeship program has four research areas: genomics and genetics; brain imaging and image analysis; mobile sensing and individual behaviors; and social networks. These areas are interconnected through three core themes: mathematical modeling and network analysis, scalable machine learning and big data analytics, and biomedical applications and social outcomes. At the nexus of these research areas and core themes, this traineeship program provides novel interdisciplinary graduate education to advance both graduate student training and scientific research. Key features of the traineeship include novel curricula; cross-disciplinary laboratory rotations between engineering, life science, and social science; new foundational classes at the intersections of data science, mathematics, artificial intelligence, behavior science, and social science; summer internships at research institutes, big data firms, and hospitals and translational clinical settings; career, ethics, and technical communication skills development; and outreach to minority, women, and high school students with a distinct focus on groups traditionally underrepresented in STEM PhD programs. The NSF Research Traineeship (NRT) Program is designed to encourage the development and implementation of bold, new potentially transformative models for STEM graduate education training. The program is dedicated to effective training of STEM graduate students in high priority interdisciplinary research areas through comprehensive traineeship models that are innovative, evidence-based, and aligned with changing workforce and research needs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
技术的融合正在将生物科学、环境科学和社会科学转变为数据密集型科学。事实上,随着每天产生的数据,存在着一个前所未有的机会来彻底改变科学发现的旅程。通过利用这些数据,人们可以促进对人类状况、行为及其潜在机制和社会结果的理解,从而实现一系列新的、变革性的研究和实践。计算机、数学、工程和科学领域的基本新方法是迫切需要的,未来的科学家必须在这些新兴的前沿方法中接受相应的培训。这项授予加州大学洛杉矶分校的国家科学基金会研究培训(NRT)奖将通过培养数据科学、数学、密码学、人工智能、基因组学、行为科学和社会科学交叉领域的研究生来满足这一需求。该培训计划预计将通过一个独特而全面的培训机会,培训120名博士生,其中包括50名获得资助的博士生,他们来自社会、生物、数学和计算科学与工程。这个跨学科的实习项目有四个研究领域:基因组学和遗传学;脑成像及图像分析;移动感知与个体行为;还有社交网络。这些领域通过三个核心主题相互关联:数学建模和网络分析,可扩展的机器学习和大数据分析,以及生物医学应用和社会成果。在这些研究领域和核心主题的联系下,该培训计划提供了新颖的跨学科研究生教育,以推进研究生培训和科学研究。实习的主要特点包括课程新颖;在工程、生命科学和社会科学之间进行跨学科的实验室轮转;数据科学、数学、人工智能、行为科学和社会科学交叉的新基础课程;在研究机构、大数据公司、医院和转化临床机构的暑期实习;职业、道德和技术沟通技能的发展;向少数族裔、女性和高中生伸出援手,重点关注传统上在STEM博士项目中代表性不足的群体。美国国家科学基金会研究实习生(NRT)计划旨在鼓励开发和实施大胆的、具有潜在变革性的STEM研究生教育培训新模式。该项目致力于通过创新、循证、适应不断变化的劳动力和研究需求的综合培训模式,在高优先级跨学科研究领域对STEM研究生进行有效培训。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Selectable Set Randomized Kaczmarz
- DOI:10.1002/nla.2458
- 发表时间:2021-10
- 期刊:
- 影响因子:4.3
- 作者:Yotam Yaniv;Jacob D. Moorman;W. Swartworth;Thomas K. Tu;Daji Landis;D. Needell
- 通讯作者:Yotam Yaniv;Jacob D. Moorman;W. Swartworth;Thomas K. Tu;Daji Landis;D. Needell
MetaPheno: A critical evaluation of deep learning and machine learning in metagenome-based disease prediction
- DOI:10.1016/j.ymeth.2019.03.003
- 发表时间:2019-08-15
- 期刊:
- 影响因子:4.8
- 作者:LaPierre, Nathan;Ju, Chelsea J. -T.;Wang, Wei
- 通讯作者:Wang, Wei
Scalable probabilistic PCA for large-scale genetic variation data
- DOI:10.1371/journal.pgen.1008773
- 发表时间:2020-05-01
- 期刊:
- 影响因子:4.5
- 作者:Agrawal, Aman;Chiu, Alec M.;Sankararaman, Sriram
- 通讯作者:Sankararaman, Sriram
MiCoP: microbial community profiling method for detecting viral and fungal organisms in metagenomic samples
- DOI:10.1186/s12864-019-5699-9
- 发表时间:2019-06-06
- 期刊:
- 影响因子:4.4
- 作者:LaPierre, Nathan;Mangul, Serghei;Eskin, Eleazar
- 通讯作者:Eskin, Eleazar
Learning to Predict Human Stress Level with Incomplete Sensor Data from Wearable Devices
- DOI:10.1145/3357384.3357831
- 发表时间:2019-11
- 期刊:
- 影响因子:0
- 作者:Jyun-Yu Jiang;Zehan Chao;A. Bertozzi;Wei Wang;S. Young;D. Needell
- 通讯作者:Jyun-Yu Jiang;Zehan Chao;A. Bertozzi;Wei Wang;S. Young;D. Needell
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrea Bertozzi其他文献
Incorporating Texture Features into Optical Flow for Atmospheric Wind Velocity Estimation
将纹理特征纳入光流中进行大气风速估计
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Joel Barnett;Andrea Bertozzi;L. Vese;Igor Yanovsky - 通讯作者:
Igor Yanovsky
Encased Cantilevers and Alternative Scan Algorithms for Ultra-Gantle High Speed Atomic Force Microscopy
- DOI:
10.1016/j.bpj.2011.11.3193 - 发表时间:
2012-01-31 - 期刊:
- 影响因子:
- 作者:
Paul Ashby;Dominik Ziegler;Andreas Frank;Sindy Frank;Alex Chen;Travis Meyer;Rodrigo Farnham;Nen Huynh;Ivo Rangelow;Jen-Mei Chang;Andrea Bertozzi - 通讯作者:
Andrea Bertozzi
Andrea Bertozzi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrea Bertozzi', 18)}}的其他基金
Collaborative Research: RAPID: Rapid computational modeling of wildfires and management with emphasis on human activity
合作研究:RAPID:野火和管理的快速计算建模,重点关注人类活动
- 批准号:
2345256 - 财政年份:2023
- 资助金额:
$ 300万 - 项目类别:
Standard Grant
ATD: Active Learning Activity Detection in Multiplex Networks of Geospatial-Cyber-Temporal Data
ATD:地理空间网络时空数据多重网络中的主动学习活动检测
- 批准号:
2318817 - 财政年份:2023
- 资助金额:
$ 300万 - 项目类别:
Standard Grant
Collaborative Research: Differential Equations Motivated Multi-Agent Sequential Deep Learning: Algorithms, Theory, and Validation
协作研究:微分方程驱动的多智能体序列深度学习:算法、理论和验证
- 批准号:
2152717 - 财政年份:2022
- 资助金额:
$ 300万 - 项目类别:
Standard Grant
RAPID: Analysis of Multiscale Network Models for the Spread of COVID-19
RAPID:针对 COVID-19 传播的多尺度网络模型分析
- 批准号:
2027438 - 财政年份:2020
- 资助金额:
$ 300万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Robust, Efficient, and Private Deep Learning Algorithms
FRG:协作研究:稳健、高效、私密的深度学习算法
- 批准号:
1952339 - 财政年份:2020
- 资助金额:
$ 300万 - 项目类别:
Standard Grant
ATD: Algorithms for Threat Detection in Knowledge Graphs
ATD:知识图中的威胁检测算法
- 批准号:
2027277 - 财政年份:2020
- 资助金额:
$ 300万 - 项目类别:
Standard Grant
ATD: Sparsity Models for Forecasting Spatio-Temporal Human Dynamics
ATD:预测时空人类动力学的稀疏模型
- 批准号:
1737770 - 财政年份:2017
- 资助金额:
$ 300万 - 项目类别:
Standard Grant
Extreme-scale algorithms for geometric graphical data models in imaging, social and network science
成像、社会和网络科学中几何图形数据模型的超大规模算法
- 批准号:
1417674 - 财政年份:2014
- 资助金额:
$ 300万 - 项目类别:
Continuing Grant
Collaborative Research: Modeling, Analysis, and Control of the Spatio-temporal Dynamics of Swarm Robotic Systems
协作研究:群体机器人系统时空动力学的建模、分析和控制
- 批准号:
1435709 - 财政年份:2014
- 资助金额:
$ 300万 - 项目类别:
Standard Grant
Particle laden flows - theory, analysis and experiment
颗粒负载流 - 理论、分析和实验
- 批准号:
1312543 - 财政年份:2013
- 资助金额:
$ 300万 - 项目类别:
Continuing Grant
相似国自然基金
新型复合物gemcitabine-miR-15a靶向抑制PRMT5-RPA-HDR信号通路促进胰腺癌化疗增敏的分子机制
- 批准号:82373128
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
基于神经网络压缩和可分级策略的HDR视频编码方法研究
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
CASAAV-HDR靶向基因组整合CaMKⅡ抑制肽AIP治疗心力衰竭的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向LDR立体显示的HDR立体视频版权保护研究
- 批准号:61971247
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
CRISPR/Cas9介导HDR-SSA两步法猪IGF2基因“无缝编辑”新技术研究
- 批准号:31702099
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
单曝光HDR成像关键技术研究
- 批准号:61401072
- 批准年份:2014
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
相似海外基金
EAGER: A Genome Wide HDR Enhancement Screen in Maize
EAGER:玉米全基因组 HDR 增强屏幕
- 批准号:
2409037 - 财政年份:2024
- 资助金额:
$ 300万 - 项目类别:
Standard Grant
NRT-HDR: Integrative Training in Data Science-Enabled Sensing of the Environment for Climate Adaptation (DataSENSE)
NRT-HDR:数据科学支持的气候适应环境感知综合培训 (DataSENSE)
- 批准号:
2244403 - 财政年份:2023
- 资助金额:
$ 300万 - 项目类别:
Continuing Grant
Evaluation of genetic variants affecting platelet function with CRISPR HDR in human megakaryocytes
利用 CRISPR HDR 评估影响人类巨核细胞血小板功能的遗传变异
- 批准号:
10737494 - 财政年份:2023
- 资助金额:
$ 300万 - 项目类别:
NRT-FW-HTF-HDR: PLATFORMS FOR EXCHANGE AND ALLOCATION OF RESOURCES (PEAR)
NRT-FW-HTF-HDR:资源交换和分配平台(PEAR)
- 批准号:
2244340 - 财政年份:2023
- 资助金额:
$ 300万 - 项目类别:
Standard Grant
NRT-HDR: Interdisciplinary Studies in Entomology, Computer Science and Technology NETwork (INSECT NET)
NRT-HDR:昆虫学、计算机科学与技术网络(INSECT NET)的跨学科研究
- 批准号:
2243979 - 财政年份:2023
- 资助金额:
$ 300万 - 项目类别:
Standard Grant
NRT-HDR: Transdisciplinary Research and Education for Air and Water Resources Solutions in Coastal Communities
NRT-HDR:沿海社区空气和水资源解决方案的跨学科研究和教育
- 批准号:
2244523 - 财政年份:2023
- 资助金额:
$ 300万 - 项目类别:
Continuing Grant
HDR DSC: Collaborative Research: Creating and Integrating Data Science Corps to Improve the Quality of Life in Urban Areas
HDR DSC:协作研究:创建和整合数据科学团队以提高城市地区的生活质量
- 批准号:
2321574 - 财政年份:2023
- 资助金额:
$ 300万 - 项目类别:
Standard Grant
Cas9を用いたゲノム編集におけるHDR効率向上に重要な要素の探索
使用 Cas9 寻找提高基因组编辑中 HDR 效率的重要因素
- 批准号:
23K13844 - 财政年份:2023
- 资助金额:
$ 300万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
NRT-HDR: Advancing Materials Frontiers with Creativity and Data Science
NRT-HDR:通过创造力和数据科学推进材料前沿
- 批准号:
2243526 - 财政年份:2023
- 资助金额:
$ 300万 - 项目类别:
Standard Grant
NRT-HDR: Computational Research for Equity in the Legal System" (CRELS)
NRT-HDR:法律体系公平的计算研究”(CRELS)
- 批准号:
2243822 - 财政年份:2023
- 资助金额:
$ 300万 - 项目类别:
Standard Grant














{{item.name}}会员




