RAPID: Analysis of Multiscale Network Models for the Spread of COVID-19
RAPID:针对 COVID-19 传播的多尺度网络模型分析
基本信息
- 批准号:2027438
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-15 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The current pandemic of coronavirus disease 2019 (COVID-19) has upended the daily lives of more than a billion people worldwide, and governments are struggling with the task of responding to the spread of the disease. Uncertainty in transmission rates and the outcomes of social distancing, "shelter-at-home" executive orders, and other interventions have created unprecedented challenges to the United States health care system. This project will address these issues directly using advanced mathematical modeling from dynamical systems, stochastic processes, and networks. The mathematical models, which are formulated with the specific features of COVID-19 in mind, will provide insights that are critical to people on the front lines who need to make recommendations for intervention strategies and human-behavior patterns to best mitigate the spread of this disease in a timely manner. The project will train a postdoctoral scholar, a PhD student, and two undergraduate students in the research needed to solve these complex problems. The standard approach for epidemic modeling, at the community scale and larger, is compartmental models in which individuals are in one of a small number of states (for example, susceptible, infected, recovered, exposed, latent), with individuals moving between states. The COVID-19 epidemic can be modeled in this way, with resistance as part of the dynamics. The simplest examples of such models for large populations are coupled ordinary differential equations that describe the fraction of a population in each of the states. To model the stochasticity of infection and latency, models with self-exciting point processes can be fit to real-world data. This project compares the dynamical systems and stochastic models of relevance to COVID-19 transmission. The models also incorporate network structure for the transmission pathways. The project extends prior research on contagions on multilayer networks by incorporating multiple transmission methods and coupling between the spread of the contagion itself and human behavior patterns. The project leverages high-resolution societal mixing patterns in epidemics, as they influence both (1) observations and demographics of who has been diagnosed with COVID-19 and (2) who transits the disease, sometimes without being diagnosed.This award is co-funded with the Applied Mathematics program and the Computational Mathematics program (Division of Mathematical Sciences), and the Office of Multidisciplinary Activities (OMA) program.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
目前的2019年冠状病毒病大流行(新冠肺炎)颠覆了全球10多亿人的日常生活,各国政府正在努力应对该疾病的传播。传播率的不确定性和社会距离、“居家避难所”行政命令和其他干预措施给美国卫生保健系统带来了前所未有的挑战。该项目将使用来自动态系统、随机过程和网络的高级数学建模来直接解决这些问题。这些数学模型是考虑到新冠肺炎的具体特征而制定的,将提供对于一线人员至关重要的见解,他们需要为干预策略和人类行为模式提出建议,以最好地及时遏制这种疾病的传播。该项目将培训一名博士后学者、一名博士生和两名本科生进行解决这些复杂问题所需的研究。在社区规模和更大的范围内,流行病建模的标准方法是隔室模型,其中个体处于少数状态之一(例如,易感、感染、恢复、暴露、潜伏),个体在状态之间移动。新冠肺炎疫情可以这样建模,耐药性是动力学的一部分。这类大人口模型最简单的例子是耦合的常微分方程式,它描述了人口在每个州的比例。为了对感染和潜伏期的随机性进行建模,具有自激点过程的模型可以与真实世界的数据相吻合。本项目比较了与新冠肺炎传播相关的动力系统和随机模型。这些模型还包含了传输路径的网络结构。该项目通过结合多种传播方法以及传染病传播本身和人类行为模式之间的耦合,扩展了先前对多层网络上的传染病的研究。该项目在流行病中利用了高分辨率的社会混合模式,因为它们影响到(1)被诊断出患有新冠肺炎的人的观察和人口统计数据,以及(2)谁在没有被诊断出的情况下传播疾病。该奖项由应用数学计划和计算数学计划(数学科学部)以及多学科活动办公室计划共同资助。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A martingale formulation for stochastic compartmental susceptible-infected-recovered (SIR) models to analyze finite size effects in COVID-19 case studies
用于随机区室易感感染恢复 (SIR) 模型的鞅公式,用于分析 COVID-19 案例研究中的有限尺寸效应
- DOI:10.3934/nhm.2022009
- 发表时间:2022
- 期刊:
- 影响因子:1
- 作者:Li, Xia;Wang, Chuntian;Li, Hao;Bertozzi, Andrea L.
- 通讯作者:Bertozzi, Andrea L.
The challenges of modeling and forecasting the spread of COVID-19
- DOI:10.1073/pnas.2006520117
- 发表时间:2020-07-21
- 期刊:
- 影响因子:11.1
- 作者:Bertozzi, Andrea L.;Franco, Elisa;Sledge, Daniel
- 通讯作者:Sledge, Daniel
Disease Detectives: Using Mathematics to Forecast the Spread of Infectious Diseases
- DOI:10.3389/frym.2020.577741
- 发表时间:2020-06
- 期刊:
- 影响因子:0
- 作者:Heather Z. Brooks;Unchitta Kanjanasaratool;Yacoub H. Kureh;M. A. Porter
- 通讯作者:Heather Z. Brooks;Unchitta Kanjanasaratool;Yacoub H. Kureh;M. A. Porter
Alternative SIAR models for infectious diseases and applications in the study of non-compliance
- DOI:10.1142/s0218202522500464
- 发表时间:2022-11-04
- 期刊:
- 影响因子:3.5
- 作者:Bongarti,Marcelo;Galvan,Luke Diego;Bertozzi,Andrea L.
- 通讯作者:Bertozzi,Andrea L.
A multilayer network model of the coevolution of the spread of a disease and competing opinions
- DOI:10.1142/s0218202521500536
- 发表时间:2021-11-01
- 期刊:
- 影响因子:3.5
- 作者:Peng, Kaiyan;Lu, Zheng;Porter, Mason A.
- 通讯作者:Porter, Mason A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrea Bertozzi其他文献
Incorporating Texture Features into Optical Flow for Atmospheric Wind Velocity Estimation
将纹理特征纳入光流中进行大气风速估计
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Joel Barnett;Andrea Bertozzi;L. Vese;Igor Yanovsky - 通讯作者:
Igor Yanovsky
Encased Cantilevers and Alternative Scan Algorithms for Ultra-Gantle High Speed Atomic Force Microscopy
- DOI:
10.1016/j.bpj.2011.11.3193 - 发表时间:
2012-01-31 - 期刊:
- 影响因子:
- 作者:
Paul Ashby;Dominik Ziegler;Andreas Frank;Sindy Frank;Alex Chen;Travis Meyer;Rodrigo Farnham;Nen Huynh;Ivo Rangelow;Jen-Mei Chang;Andrea Bertozzi - 通讯作者:
Andrea Bertozzi
Andrea Bertozzi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrea Bertozzi', 18)}}的其他基金
Collaborative Research: RAPID: Rapid computational modeling of wildfires and management with emphasis on human activity
合作研究:RAPID:野火和管理的快速计算建模,重点关注人类活动
- 批准号:
2345256 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
ATD: Active Learning Activity Detection in Multiplex Networks of Geospatial-Cyber-Temporal Data
ATD:地理空间网络时空数据多重网络中的主动学习活动检测
- 批准号:
2318817 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Differential Equations Motivated Multi-Agent Sequential Deep Learning: Algorithms, Theory, and Validation
协作研究:微分方程驱动的多智能体序列深度学习:算法、理论和验证
- 批准号:
2152717 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Robust, Efficient, and Private Deep Learning Algorithms
FRG:协作研究:稳健、高效、私密的深度学习算法
- 批准号:
1952339 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
ATD: Algorithms for Threat Detection in Knowledge Graphs
ATD:知识图中的威胁检测算法
- 批准号:
2027277 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
NRT-HDR: Modeling and Understanding Human Behavior: Harnessing Data from Genes to Social Networks
NRT-HDR:建模和理解人类行为:利用从基因到社交网络的数据
- 批准号:
1829071 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
ATD: Sparsity Models for Forecasting Spatio-Temporal Human Dynamics
ATD:预测时空人类动力学的稀疏模型
- 批准号:
1737770 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Extreme-scale algorithms for geometric graphical data models in imaging, social and network science
成像、社会和网络科学中几何图形数据模型的超大规模算法
- 批准号:
1417674 - 财政年份:2014
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: Modeling, Analysis, and Control of the Spatio-temporal Dynamics of Swarm Robotic Systems
协作研究:群体机器人系统时空动力学的建模、分析和控制
- 批准号:
1435709 - 财政年份:2014
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Particle laden flows - theory, analysis and experiment
颗粒负载流 - 理论、分析和实验
- 批准号:
1312543 - 财政年份:2013
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Multiscale Analysis and Simulation of Biofilm Mechanics
合作研究:生物膜力学的多尺度分析与模拟
- 批准号:
2313746 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
IHBEM: Empirical analysis of a data-driven multiscale metapopulation mobility network modeling infection dynamics and mobility responses in rural States
IHBEM:对数据驱动的多尺度集合人口流动网络进行实证分析,对农村国家的感染动态和流动反应进行建模
- 批准号:
2327862 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Elucidation of Stress-Strain Response Dominant Factors in Crystalline Materials by Multiscale Strain Analysis
通过多尺度应变分析阐明晶体材料中应力-应变响应的主导因素
- 批准号:
23K03578 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multiscale analysis of HIV-1-induced small T cell syncytia
HIV-1诱导的小T细胞合胞体的多尺度分析
- 批准号:
10762630 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
A Multiscale Computational Analysis of Defect-assisted Ionic Transport in Plastically Deformed Solid Oxides
塑性变形固体氧化物中缺陷辅助离子输运的多尺度计算分析
- 批准号:
2322675 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Multiscale analysis of nanocomposite insulation materials and clarification of mechanism of insulation enhancement
纳米复合绝缘材料的多尺度分析及绝缘增强机理的阐明
- 批准号:
22H01473 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Multiscale Analysis and Simulation of Biofilm Mechanics
合作研究:生物膜力学的多尺度分析与模拟
- 批准号:
2205007 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
- 批准号:
2219384 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Multiscale, Multimodal Analysis of Skin and Spatial Cell Organization
皮肤和空间细胞组织的多尺度、多模式分析
- 批准号:
10826224 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Integrative and multiscale analysis of epigenomic sequencing data
表观基因组测序数据的综合和多尺度分析
- 批准号:
RGPIN-2020-06200 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual