RAPID: Analysis of Multiscale Network Models for the Spread of COVID-19

RAPID:针对 COVID-19 传播的多尺度网络模型分析

基本信息

  • 批准号:
    2027438
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-04-15 至 2022-03-31
  • 项目状态:
    已结题

项目摘要

The current pandemic of coronavirus disease 2019 (COVID-19) has upended the daily lives of more than a billion people worldwide, and governments are struggling with the task of responding to the spread of the disease. Uncertainty in transmission rates and the outcomes of social distancing, "shelter-at-home" executive orders, and other interventions have created unprecedented challenges to the United States health care system. This project will address these issues directly using advanced mathematical modeling from dynamical systems, stochastic processes, and networks. The mathematical models, which are formulated with the specific features of COVID-19 in mind, will provide insights that are critical to people on the front lines who need to make recommendations for intervention strategies and human-behavior patterns to best mitigate the spread of this disease in a timely manner. The project will train a postdoctoral scholar, a PhD student, and two undergraduate students in the research needed to solve these complex problems. The standard approach for epidemic modeling, at the community scale and larger, is compartmental models in which individuals are in one of a small number of states (for example, susceptible, infected, recovered, exposed, latent), with individuals moving between states. The COVID-19 epidemic can be modeled in this way, with resistance as part of the dynamics. The simplest examples of such models for large populations are coupled ordinary differential equations that describe the fraction of a population in each of the states. To model the stochasticity of infection and latency, models with self-exciting point processes can be fit to real-world data. This project compares the dynamical systems and stochastic models of relevance to COVID-19 transmission. The models also incorporate network structure for the transmission pathways. The project extends prior research on contagions on multilayer networks by incorporating multiple transmission methods and coupling between the spread of the contagion itself and human behavior patterns. The project leverages high-resolution societal mixing patterns in epidemics, as they influence both (1) observations and demographics of who has been diagnosed with COVID-19 and (2) who transits the disease, sometimes without being diagnosed.This award is co-funded with the Applied Mathematics program and the Computational Mathematics program (Division of Mathematical Sciences), and the Office of Multidisciplinary Activities (OMA) program.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
2019年冠状病毒病(COVID-19)目前的大流行使全球超过十亿人口的日常生活更加颠覆,政府正在努力应对疾病传播的任务。传播率的不确定性和社会疏远,“居住在家”行政命令以及其他干预措施的不确定性对美国卫生保健系统造成了前所未有的挑战。该项目将使用来自动态系统,随机过程和网络的高级数学建模直接解决这些问题。考虑到Covid-19的特定特征的数学模型将为您提供对前线的人们至关重要的见解,这些人需要为干预策略和人类行为模式提出建议,以最大程度地减轻这种疾病的传播。该项目将在解决这些复杂问题所需的研究中培训一名博士后学者,一名博士生和两名本科生。在社区规模和较大范围内,流行建模的标准方法是隔间模型,其中个人位于少数州之一(例如,易感性,感染,恢复,暴露,潜在),个人在国家之间移动。 COVID-19的流行病可以以这种方式建模,并作为动力学的一部分进行抗性。此类模型的最简单示例是耦合的普通微分方程,这些方程描述了每个州人口的比例。为了建模感染和潜伏期的随机性,具有自我激发点过程的模型可以适合实际数据。该项目比较了与COVID-19传输相关性的动力学系统和随机模型。这些模型还结合了传输途径的网络结构。该项目通过合并多种传输方法并在传播本身的传播和人类行为模式之间进行耦合,从而扩展了对多层网络传染的先前研究。 The project leverages high-resolution societal mixing patterns in epidemics, as they influence both (1) observations and demographics of who has been diagnosed with COVID-19 and (2) who transits the disease, sometimes without being diagnosed.This award is co-funded with the Applied Mathematics program and the Computational Mathematics program (Division of Mathematical Sciences), and the Office of Multidisciplinary Activities (OMA)该奖项反映了NSF的法定任务,并通过使用基金会的知识分子优点和更广泛的影响审查标准来评估值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Analysis of COVID-19 Knowledge Graph Construction and Applications
A martingale formulation for stochastic compartmental susceptible-infected-recovered (SIR) models to analyze finite size effects in COVID-19 case studies
用于随机区室易感感染恢复 (SIR) 模型的鞅公式,用于分析 COVID-19 案例研究中的有限尺寸效应
  • DOI:
    10.3934/nhm.2022009
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Li, Xia;Wang, Chuntian;Li, Hao;Bertozzi, Andrea L.
  • 通讯作者:
    Bertozzi, Andrea L.
Disease Detectives: Using Mathematics to Forecast the Spread of Infectious Diseases
  • DOI:
    10.3389/frym.2020.577741
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Heather Z. Brooks;Unchitta Kanjanasaratool;Yacoub H. Kureh;M. A. Porter
  • 通讯作者:
    Heather Z. Brooks;Unchitta Kanjanasaratool;Yacoub H. Kureh;M. A. Porter
The challenges of modeling and forecasting the spread of COVID-19
A multilayer network model of the coevolution of the spread of a disease and competing opinions
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrea Bertozzi其他文献

Incorporating Texture Features into Optical Flow for Atmospheric Wind Velocity Estimation
将纹理特征纳入光流中进行大气风速估计
Encased Cantilevers and Alternative Scan Algorithms for Ultra-Gantle High Speed Atomic Force Microscopy
  • DOI:
    10.1016/j.bpj.2011.11.3193
  • 发表时间:
    2012-01-31
  • 期刊:
  • 影响因子:
  • 作者:
    Paul Ashby;Dominik Ziegler;Andreas Frank;Sindy Frank;Alex Chen;Travis Meyer;Rodrigo Farnham;Nen Huynh;Ivo Rangelow;Jen-Mei Chang;Andrea Bertozzi
  • 通讯作者:
    Andrea Bertozzi

Andrea Bertozzi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrea Bertozzi', 18)}}的其他基金

Collaborative Research: RAPID: Rapid computational modeling of wildfires and management with emphasis on human activity
合作研究:RAPID:野火和管理的快速计算建模,重点关注人类活动
  • 批准号:
    2345256
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
ATD: Active Learning Activity Detection in Multiplex Networks of Geospatial-Cyber-Temporal Data
ATD:地理空间网络时空数据多重网络中的主动学习活动检测
  • 批准号:
    2318817
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Differential Equations Motivated Multi-Agent Sequential Deep Learning: Algorithms, Theory, and Validation
协作研究:微分方程驱动的多智能体序列深度学习:算法、理论和验证
  • 批准号:
    2152717
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Robust, Efficient, and Private Deep Learning Algorithms
FRG:协作研究:稳健、高效、私密的深度学习算法
  • 批准号:
    1952339
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
ATD: Algorithms for Threat Detection in Knowledge Graphs
ATD:知识图中的威胁检测算法
  • 批准号:
    2027277
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
NRT-HDR: Modeling and Understanding Human Behavior: Harnessing Data from Genes to Social Networks
NRT-HDR:建模和理解人类行为:利用从基因到社交网络的数据
  • 批准号:
    1829071
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
ATD: Sparsity Models for Forecasting Spatio-Temporal Human Dynamics
ATD:预测时空人类动力学的稀疏模型
  • 批准号:
    1737770
  • 财政年份:
    2017
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Extreme-scale algorithms for geometric graphical data models in imaging, social and network science
成像、社会和网络科学中几何图形数据模型的超大规模算法
  • 批准号:
    1417674
  • 财政年份:
    2014
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: Modeling, Analysis, and Control of the Spatio-temporal Dynamics of Swarm Robotic Systems
协作研究:群体机器人系统时空动力学的建模、分析和控制
  • 批准号:
    1435709
  • 财政年份:
    2014
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Particle laden flows - theory, analysis and experiment
颗粒负载流 - 理论、分析和实验
  • 批准号:
    1312543
  • 财政年份:
    2013
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant

相似国自然基金

多尺度代谢互作网络分析新方法应用于阿尔兹海默病空间代谢组学研究
  • 批准号:
    82372087
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
湖泊叶绿素a浓度多源卫星协同遥感监测像元尺度不确定性分析和校正方法研究
  • 批准号:
    52309040
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
科技风险的多尺度分析与尺度推绎
  • 批准号:
    72304042
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
深埋膨胀岩隧洞围岩吸水–膨胀–软化的多尺度耦合分析方法与致灾机制研究
  • 批准号:
    42377177
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
混合数据的多尺度知识获取与不确定性分析
  • 批准号:
    12371466
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目

相似海外基金

選択肢トピックの定性・定量分析と共通尺度化による順序多肢選択式問題の開発と検証
通过对选择主题和常见量表的定性和定量分析,开发和验证有序多项选择题
  • 批准号:
    24K16822
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
Collaborative Research: Multiscale Analysis and Simulation of Biofilm Mechanics
合作研究:生物膜力学的多尺度分析与模拟
  • 批准号:
    2313746
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
IHBEM: Empirical analysis of a data-driven multiscale metapopulation mobility network modeling infection dynamics and mobility responses in rural States
IHBEM:对数据驱动的多尺度集合人口流动网络进行实证分析,对农村国家的感染动态和流动反应进行建模
  • 批准号:
    2327862
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Systems Biology of Tumor-Immune-Stromal Interactions in Metastatic Progression
转移进展中肿瘤-免疫-基质相互作用的系统生物学
  • 批准号:
    10729464
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了