ATD: Algorithms for Threat Detection in Knowledge Graphs

ATD:知识图中的威胁检测算法

基本信息

  • 批准号:
    2027277
  • 负责人:
  • 金额:
    $ 60.71万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

This project develops new mathematical algorithms and models involving knowledge graphs. A knowledge graph represents what is known about a subject in the form of labeled nodes and edges. More than simply labeled data, knowledge graphs organize data according to high-level meanings and assign globally unique identification to each node in the graph to match real-world entities. Much work on knowledge graphs treats databases and queries. In contrast, in the context of threat detection, this project focuses on algorithms that identify latent information in the graph and predictive models associated with data on the graph. The project will involve a combination of mathematical methods for subgraph isomorphism detection, time series analysis, agent-based and multiscale modeling, and pattern recognition. The project will train a postdoctoral scholar, PhD student, and six undergraduate researchers through involvement in the research.This project brings together several different focused problems with large, multimodal, complex datasets. The data is organized into a knowledge graph in which additional information is added and absorbed as it becomes available. This project considers three types of knowledge graphs each for different applications: (1) knowledge graphs constructed from complex multi-part narratives; (2) knowledge graphs constructed from heterogeneous online content; and (3) knowledge graphs associated with large-scale human interaction dynamics such as a global pandemic. For (1), algorithms will be designed to identify important causal subgraphs. For (2), the project aims to identify threats in space and time based on templated patterns. For (3), desired goals are both a predictive ability for actions from a micro to macro scale along with tools to assess potential impact versus cost of preventative measures, from local to regional to country-wide scale.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目开发了涉及知识图的新数学算法和模型。知识图以标记的节点和边的形式表示关于主题的已知内容。知识图不仅仅是简单的标记数据,它还根据高层含义组织数据,并为图中的每个节点分配全局唯一标识,以匹配真实世界的实体。关于知识图的许多工作涉及数据库和查询。相比之下,在威胁检测的背景下,该项目侧重于识别图中潜在信息的算法以及与图上数据相关的预测模型。该项目将涉及子图同构检测,时间序列分析,基于代理和多尺度建模和模式识别的数学方法的组合。该项目将通过参与研究培养一名博士后学者,博士生和六名本科生研究人员。该项目将几个不同的重点问题与大型,多模态,复杂的数据集结合在一起。数据被组织成一个知识图,在其中添加和吸收可用的额外信息。该项目考虑了三种不同应用的知识图:(1)由复杂的多部分叙述构建的知识图;(2)由异构在线内容构建的知识图;(3)与大规模人类互动动态(如全球流行病)相关的知识图。对于(1),将设计算法来识别重要的因果子图。对于(2),该项目旨在根据模板模式识别空间和时间上的威胁。对于(3),预期目标是从微观到宏观的行动预测能力沿着从地方到区域到全国范围的评估预防措施的潜在影响与成本的工具。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Selectable Set Randomized Kaczmarz
  • DOI:
    10.1002/nla.2458
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Yotam Yaniv;Jacob D. Moorman;W. Swartworth;Thomas K. Tu;Daji Landis;D. Needell
  • 通讯作者:
    Yotam Yaniv;Jacob D. Moorman;W. Swartworth;Thomas K. Tu;Daji Landis;D. Needell
Knowledge Graphs of the QAnon Twitter Network
  • DOI:
    10.1109/bigdata55660.2022.10021128
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Clay Adams;Malvina Bozhidarova;James Chen;Andrew Gao;Zhengtong Liu;J. Hunter Priniski;Junyuan Lin-Junyu
  • 通讯作者:
    Clay Adams;Malvina Bozhidarova;James Chen;Andrew Gao;Zhengtong Liu;J. Hunter Priniski;Junyuan Lin-Junyu
Subgraph Matching on Multiplex Networks
  • DOI:
    10.1109/tnse.2021.3056329
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Jacob D. Moorman;Thomas K. Tu;Qinyi Chen;Xie He;A. Bertozzi
  • 通讯作者:
    Jacob D. Moorman;Thomas K. Tu;Qinyi Chen;Xie He;A. Bertozzi
Is the recent surge in violence in American cities due to contagion?
最近美国城市的暴力事件激增是因为蔓延吗?
  • DOI:
    10.1016/j.jcrimjus.2021.101848
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Brantingham, P. Jeffrey;Carter, Jeremy;MacDonald, John;Melde, Chris;Mohler, George
  • 通讯作者:
    Mohler, George
Project and Forget: Solving Large-Scale Metric Constrained Problems
  • DOI:
  • 发表时间:
    2019-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Gilbert;Rishi Sonthalia
  • 通讯作者:
    A. Gilbert;Rishi Sonthalia
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrea Bertozzi其他文献

Incorporating Texture Features into Optical Flow for Atmospheric Wind Velocity Estimation
将纹理特征纳入光流中进行大气风速估计
Encased Cantilevers and Alternative Scan Algorithms for Ultra-Gantle High Speed Atomic Force Microscopy
  • DOI:
    10.1016/j.bpj.2011.11.3193
  • 发表时间:
    2012-01-31
  • 期刊:
  • 影响因子:
  • 作者:
    Paul Ashby;Dominik Ziegler;Andreas Frank;Sindy Frank;Alex Chen;Travis Meyer;Rodrigo Farnham;Nen Huynh;Ivo Rangelow;Jen-Mei Chang;Andrea Bertozzi
  • 通讯作者:
    Andrea Bertozzi

Andrea Bertozzi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrea Bertozzi', 18)}}的其他基金

Collaborative Research: RAPID: Rapid computational modeling of wildfires and management with emphasis on human activity
合作研究:RAPID:野火和管理的快速计算建模,重点关注人类活动
  • 批准号:
    2345256
  • 财政年份:
    2023
  • 资助金额:
    $ 60.71万
  • 项目类别:
    Standard Grant
ATD: Active Learning Activity Detection in Multiplex Networks of Geospatial-Cyber-Temporal Data
ATD:地理空间网络时空数据多重网络中的主动学习活动检测
  • 批准号:
    2318817
  • 财政年份:
    2023
  • 资助金额:
    $ 60.71万
  • 项目类别:
    Standard Grant
Collaborative Research: Differential Equations Motivated Multi-Agent Sequential Deep Learning: Algorithms, Theory, and Validation
协作研究:微分方程驱动的多智能体序列深度学习:算法、理论和验证
  • 批准号:
    2152717
  • 财政年份:
    2022
  • 资助金额:
    $ 60.71万
  • 项目类别:
    Standard Grant
RAPID: Analysis of Multiscale Network Models for the Spread of COVID-19
RAPID:针对 COVID-19 传播的多尺度网络模型分析
  • 批准号:
    2027438
  • 财政年份:
    2020
  • 资助金额:
    $ 60.71万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Robust, Efficient, and Private Deep Learning Algorithms
FRG:协作研究:稳健、高效、私密的深度学习算法
  • 批准号:
    1952339
  • 财政年份:
    2020
  • 资助金额:
    $ 60.71万
  • 项目类别:
    Standard Grant
NRT-HDR: Modeling and Understanding Human Behavior: Harnessing Data from Genes to Social Networks
NRT-HDR:建模和理解人类行为:利用从基因到社交网络的数据
  • 批准号:
    1829071
  • 财政年份:
    2018
  • 资助金额:
    $ 60.71万
  • 项目类别:
    Standard Grant
ATD: Sparsity Models for Forecasting Spatio-Temporal Human Dynamics
ATD:预测时空人类动力学的稀疏模型
  • 批准号:
    1737770
  • 财政年份:
    2017
  • 资助金额:
    $ 60.71万
  • 项目类别:
    Standard Grant
Extreme-scale algorithms for geometric graphical data models in imaging, social and network science
成像、社会和网络科学中几何图形数据模型的超大规模算法
  • 批准号:
    1417674
  • 财政年份:
    2014
  • 资助金额:
    $ 60.71万
  • 项目类别:
    Continuing Grant
Collaborative Research: Modeling, Analysis, and Control of the Spatio-temporal Dynamics of Swarm Robotic Systems
协作研究:群体机器人系统时空动力学的建模、分析和控制
  • 批准号:
    1435709
  • 财政年份:
    2014
  • 资助金额:
    $ 60.71万
  • 项目类别:
    Standard Grant
Particle laden flows - theory, analysis and experiment
颗粒负载流 - 理论、分析和实验
  • 批准号:
    1312543
  • 财政年份:
    2013
  • 资助金额:
    $ 60.71万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219956
  • 财政年份:
    2023
  • 资助金额:
    $ 60.71万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219904
  • 财政年份:
    2023
  • 资助金额:
    $ 60.71万
  • 项目类别:
    Standard Grant
ATD: Quantum algorithms for spatiotemporal models with applications to threat detection
ATD:时空模型的量子算法及其在威胁检测中的应用
  • 批准号:
    2319279
  • 财政年份:
    2023
  • 资助金额:
    $ 60.71万
  • 项目类别:
    Standard Grant
ATD: Algorithms for Point Processes on Networks for Threat Detection
ATD:用于威胁检测的网络点处理算法
  • 批准号:
    1925263
  • 财政年份:
    2019
  • 资助金额:
    $ 60.71万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: Theory and Algorithms for Real-Time Threat Detection from Massive Data Streams
ATD:协作研究:海量数据流实时威胁检测的理论和算法
  • 批准号:
    1829955
  • 财政年份:
    2018
  • 资助金额:
    $ 60.71万
  • 项目类别:
    Continuing Grant
ATD: Collaborative Research: Theory and Algorithms for Real-Time Threat Detection from Massive Data Streams
ATD:协作研究:海量数据流实时威胁检测的理论和算法
  • 批准号:
    1830066
  • 财政年份:
    2018
  • 资助金额:
    $ 60.71万
  • 项目类别:
    Continuing Grant
ATD: Collaborative Research: Point Process Algorithms for Threat Detection from Heterogeneous Human Mobility and Activity Data
ATD:协作研究:用于从异构人体移动性和活动数据进行威胁检测的点处理算法
  • 批准号:
    1737996
  • 财政年份:
    2017
  • 资助金额:
    $ 60.71万
  • 项目类别:
    Continuing Grant
ATD: Collaborative Research: Point Process Algorithms for Threat Detection from Heterogeneous Human Mobility and Activity Data
ATD:协作研究:用于从异构人体移动性和活动数据进行威胁检测的点处理算法
  • 批准号:
    1737925
  • 财政年份:
    2017
  • 资助金额:
    $ 60.71万
  • 项目类别:
    Continuing Grant
ATD: Online Multiscale Algorithms for Geometric Density Estimation in High-Dimensions and Persistent Homology of Data for Improved Threat Detection
ATD:用于高维几何密度估计和数据持久同源性的在线多尺度算法,以改进威胁检测
  • 批准号:
    1756892
  • 财政年份:
    2016
  • 资助金额:
    $ 60.71万
  • 项目类别:
    Standard Grant
ATD: Online Multiscale Algorithms for Geometric Density Estimation in High-Dimensions and Persistent Homology of Data for Improved Threat Detection
ATD:用于高维几何密度估计和数据持久同源性的在线多尺度算法,以改进威胁检测
  • 批准号:
    1222567
  • 财政年份:
    2012
  • 资助金额:
    $ 60.71万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了