ATD: Collaborative Research: Adaptive and Rapid Spatial-Temporal Threat Detection over Networks

ATD:协作研究:网络上的自适应快速时空威胁检测

基本信息

  • 批准号:
    1830363
  • 负责人:
  • 金额:
    $ 6.84万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

This project aims to develop innovative machine learning and statistical algorithms for detecting, preventing, and responding to threats over networks. Two concrete applications are monitoring the threat of multi-antibiotic-resistant (MDR) gonorrhea from a network of clinics across the United States and monitoring HIV transmission in clusters of patients. The research has impact in many other practical applications, including biosurveillance, engineering, homeland security, finance, and public health, where large-scale spatial-temporal data streams are collected with the aim of rapid detection and prevention of threats. The research aims to develop crucial scalable algorithms and methods to effectively and efficiently monitor, analyze, and optimize responses in these situations. In addition, the project will integrate research and education by infusing the research findings into the curriculum and by involving Ph.D. students in research. This project aims to develop innovative algorithms for rapid threat detection by combining spatial-temporal models, ordinary differential equation (ODE) models with change-point detection, and multi-armed bandit and ensemble methods when monitoring large-scale spatial-temporal data over networks. In particular, efficient scalable algorithms are developed in three interrelated research tasks, including (1) rapid detection of threats by combining a "background + anomaly + noise" decomposition framework with sequential change-point detection; (2) predictive analytics of threats by applying multi-armed bandit algorithms and adaptive sampling in the changing environments to assess increasing risks at the population level; and (3) prescriptive analytics of threats by developing nested ensemble models based on calibrated ODE and data-driven spatial-temporal models so as to better assess the effects of prevention/intervention actions. Results of the project are expected to significantly advance the state of the art in spatial-temporal models, online learning, streaming data analysis, and large-scale inference.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在开发创新的机器学习和统计算法,用于检测、预防和响应网络威胁。两个具体的应用是监测来自美国各地诊所网络的多重抗生素耐药(MDR)淋病的威胁,以及监测患者群中的HIV传播。该研究在许多其他实际应用中产生了影响,包括生物监测,工程,国土安全,金融和公共卫生,其中收集大规模时空数据流,旨在快速检测和预防威胁。该研究旨在开发关键的可扩展算法和方法,以有效且高效地监控、分析和优化这些情况下的响应。此外,该项目还将通过将研究成果融入课程,并通过邀请博士生参与,将研究与教育结合起来。学生在研究。 该项目旨在开发创新的算法,通过结合时空模型,常微分方程(ODE)模型与变点检测,以及多臂强盗和集成方法,在网络上监视大规模时空数据时,进行快速威胁检测。具体而言,在三个相互关联的研究任务中开发了有效的可扩展算法,包括:(1)通过将“背景+异常+噪声”分解框架与顺序变点检测相结合来快速检测威胁;(2)通过应用多臂强盗算法和自适应采样来预测分析威胁,以在不断变化的环境中评估群体水平上增加的风险;以及(3)通过基于校准的ODE和数据驱动的时空模型开发嵌套集合模型,对威胁进行规范性分析,以便更好地评估预防/干预行动的效果。该项目的成果预计将大大推进时空模型、在线学习、流数据分析和大规模推理的最新技术水平。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Real-time detection of clustered events in video-imaging data with applications to additive manufacturing
  • DOI:
    10.1080/24725854.2021.1882013
  • 发表时间:
    2021-02-18
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Yan, Hao;Grasso, Marco;Colosimo, Bianca Maria
  • 通讯作者:
    Colosimo, Bianca Maria
Adaptive resources allocation CUSUM for binomial count data monitoring with application to COVID-19 hotspot detection
  • DOI:
    10.1080/02664763.2022.2117288
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Jiuyun Hu;Y. Mei;S. Holte;Hao Yan
  • 通讯作者:
    Jiuyun Hu;Y. Mei;S. Holte;Hao Yan
Adaptive Change Point Monitoring for High-Dimensional Data
  • DOI:
    10.5705/ss.202020.0438
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Teng Wu;Runmin Wang;Hao Yan;Xiaofeng Shao
  • 通讯作者:
    Teng Wu;Runmin Wang;Hao Yan;Xiaofeng Shao
Toward a better monitoring statistic for profile monitoring via variational autoencoders
  • DOI:
    10.1080/00224065.2021.1903821
  • 发表时间:
    2019-11
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    N. Sergin;Hao Yan
  • 通讯作者:
    N. Sergin;Hao Yan
Deep multistage multi-task learning for quality prediction of multistage manufacturing systems
  • DOI:
    10.1080/00224065.2021.1903822
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Hao Yan;Nurrettin Dorukhan Sergin;William A. Brenneman;Steve J. Lange;Shan Ba
  • 通讯作者:
    Hao Yan;Nurrettin Dorukhan Sergin;William A. Brenneman;Steve J. Lange;Shan Ba
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hao Yan其他文献

Refined assessment of size-fractioned particulate matter (PM2.5/PM10/PMtotal) emissions from coal-fired power plants in China
中国燃煤电厂粒度分级颗粒物(PM2.5/PM10/PMtotal)排放的精细化评估
  • DOI:
    10.1016/j.scitotenv.2019.135735
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Wu Bobo;Tian Hezhong;Hao Yan;Liu Shuhan;Sun Yujiao;Bai Xiaoxuan;Liu Wei;Lin Shumin;Zhu Chuanyong;Hao Jiming;Luo Lining;Zhao Shuang;Guo Zhihui
  • 通讯作者:
    Guo Zhihui
Establishment and pathogenesis of mouse peanut allergy model: Establishment and pathogenesis of mouse peanut allergy model
小鼠花生过敏模型的建立及发病机制: 小鼠花生过敏模型的建立及发病机制
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhi;Chenghui Yang;Hao Yan;Xiaoyu Liu;L. Xia;Li Li
  • 通讯作者:
    Li Li
Regulation of the phytotoxic response of Arabidopsis thaliana to the Fusarium mycotoxin deoxynivalenol
拟南芥对镰刀菌毒素脱氧雪腐镰刀菌烯醇植物毒性反应的调节
  • DOI:
    10.1016/s2095-3119(19)62741-3
  • 发表时间:
    2020-03
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Yan Wang;Hao Yan;Qi Wang;Ran Zheng;Kai Xia;Yang Liu
  • 通讯作者:
    Yang Liu
A high-resolution emission inventory of anthropogenic trace elements in Beijing-Tianjin-Hebei (BTH) region of China
中国京津冀(BTH)地区人为微量元素高分辨率排放清单
  • DOI:
    10.1016/j.atmosenv.2018.08.035
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Zhu Chuanyong;Tian Hezhong;Hao Yan;Gao Jiajia;Hao Jiming;Wang Yong;Hua Shenbing;Wang Kun;Liu Huanjia
  • 通讯作者:
    Liu Huanjia
Urban energy-water nexus: Spatial and inter-sectoral analysis in a multi-scale economy
城市能源与水的关系:多规模经济中的空间和部门间分析
  • DOI:
    10.1016/j.ecolmodel.2019.04.020
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Nawab Asim;Liu Gengyuan;Meng Fanxin;Hao Yan;Zhang Yan
  • 通讯作者:
    Zhang Yan

Hao Yan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hao Yan', 18)}}的其他基金

Collaborative Research: Multi-Agent Adaptive Data Collection for Automated Post-Disaster Rapid Damage Assessment
协作研究:用于灾后自动化快速损害评估的多智能体自适应数据收集
  • 批准号:
    2316654
  • 财政年份:
    2023
  • 资助金额:
    $ 6.84万
  • 项目类别:
    Standard Grant
Self-assembled DNA crystals as scaffolds for macromolecules
自组装 DNA 晶体作为大分子支架
  • 批准号:
    2324944
  • 财政年份:
    2023
  • 资助金额:
    $ 6.84万
  • 项目类别:
    Standard Grant
SemiSynBio-III: DNA Templated Chiral Metamaterials for Information Storage
SemiSynBio-III:用于信息存储的 DNA 模板手性超材料
  • 批准号:
    2227650
  • 财政年份:
    2022
  • 资助金额:
    $ 6.84万
  • 项目类别:
    Standard Grant
Rational design of self-assembled, three-dimensional DNA crystals
自组装三维DNA晶体的合理设计
  • 批准号:
    2004250
  • 财政年份:
    2020
  • 资助金额:
    $ 6.84万
  • 项目类别:
    Standard Grant
SemiSynBio-II: DNA-Based Memory for High-Density Information Storage and Molecular Cryptography with Fast Readout Methods
SemiSynBio-II:基于 DNA 的存储器,用于高密度信息存储和具有快速读出方法的分子密码学
  • 批准号:
    2027215
  • 财政年份:
    2020
  • 资助金额:
    $ 6.84万
  • 项目类别:
    Standard Grant
Student and Postdoc Travel Support for International Workshop on Future trends in DNA-based nanotechnology
基于 DNA 的纳米技术未来趋势国际研讨会的学生和博士后旅行支持
  • 批准号:
    1707491
  • 财政年份:
    2017
  • 资助金额:
    $ 6.84万
  • 项目类别:
    Standard Grant
Bilateral NSF/BIO-BBSRC: Synthetic DNA Nanopores for Selective Transmembrane Transport
双边 NSF/BIO-BBSRC:用于选择性跨膜运输的合成 DNA 纳米孔
  • 批准号:
    1644745
  • 财政年份:
    2016
  • 资助金额:
    $ 6.84万
  • 项目类别:
    Standard Grant
AF: Medium: Collaborative Research: Top-down algorithmic design of structured nucleic acid assemblies
AF:中:协作研究:结构化核酸组装体的自上而下的算法设计
  • 批准号:
    1563799
  • 财政年份:
    2016
  • 资助金额:
    $ 6.84万
  • 项目类别:
    Continuing Grant
EAGER: Collaborative Research: Algorithmic design principles for programmed DNA nanocages
EAGER:协作研究:编程 DNA 纳米笼的算法设计原理
  • 批准号:
    1547962
  • 财政年份:
    2015
  • 资助金额:
    $ 6.84万
  • 项目类别:
    Standard Grant
Self-assembling Quasi-crystals from DNA Tiles
DNA 瓦片自组装准晶体
  • 批准号:
    1360635
  • 财政年份:
    2014
  • 资助金额:
    $ 6.84万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219956
  • 财政年份:
    2023
  • 资助金额:
    $ 6.84万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: a-DMIT: a novel Distributed, MultI-channel, Topology-aware online monitoring framework of massive spatiotemporal data
合作研究:ATD:a-DMIT:一种新颖的分布式、多通道、拓扑感知的海量时空数据在线监测框架
  • 批准号:
    2220495
  • 财政年份:
    2023
  • 资助金额:
    $ 6.84万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319370
  • 财政年份:
    2023
  • 资助金额:
    $ 6.84万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建​​模和风险缓解
  • 批准号:
    2319552
  • 财政年份:
    2023
  • 资助金额:
    $ 6.84万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219904
  • 财政年份:
    2023
  • 资助金额:
    $ 6.84万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319371
  • 财政年份:
    2023
  • 资助金额:
    $ 6.84万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319372
  • 财政年份:
    2023
  • 资助金额:
    $ 6.84万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建​​模和风险缓解
  • 批准号:
    2319551
  • 财政年份:
    2023
  • 资助金额:
    $ 6.84万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
  • 批准号:
    2220523
  • 财政年份:
    2023
  • 资助金额:
    $ 6.84万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
  • 批准号:
    2220529
  • 财政年份:
    2023
  • 资助金额:
    $ 6.84万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了