ATD: Collaborative Research: Spatio-Temporal Data Analysis with Dynamic Network Models

ATD:协作研究:使用动态网络模型进行时空数据分析

基本信息

  • 批准号:
    1830547
  • 负责人:
  • 金额:
    $ 14.17万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Modeling and analyzing spatially-determined and time-varying (spatiotemporal) interactions is at the forefront of research in many scientific and engineering disciplines, including the social and behavioral sciences, transportation, healthcare, economics, and epidemiology. This project represents spatiotemporal interactions of entities as a dynamic complex network and aims to develop statistically-principled methods for modeling, analyzing, and monitoring the dynamic interactions. The methods developed in this work will provide scalable solutions for problems relevant to threat detection, including understanding spreading of diseases and viruses through human proximity networks, understanding human migration patterns through geo-tagged social media data, and monitoring multi-modal urban mobility networks through video footage and sensor logs in a smart city. Graduate and undergraduate students will be trained in interdisciplinary data science through involvement in the research. New data structures, models, and algorithms for manipulating and analyzing spatiotemporal networks will be implemented in the widely-used NetworkX Python package.The project aims to advance the field of spatiotemporal network analysis by developing new models and methods for representing, monitoring, and predicting spatiotemporal interactions. The research introduces new problem formulations, new analytical methods, and new algorithmic techniques for implementation. This project has three primary aims. First, the project will develop a dynamic embedding model in a latent hyperbolic space to represent spatiotemporal networks. This model enables tracking topological changes both at the network level and at the level of pairs of entities over time. Next, the project will investigate a network surveillance framework based on a multi-resolution exponential random graph model to monitor complex spatiotemporal systems for real-time anomalies and threats. Third, the project will develop a multivariate point process on collections of actors in a spatiotemporal network to model timestamped directed events across different regions in space. This project seeks to create an integrated framework for simultaneously monitoring systematic risk and detecting imminent threat to a system using multi-modal network monitoring techniques. The techniques under development will be utilized to monitor complex systems arising from massive spatiotemporal data accumulation, including data on human contacts through physical proximity, social media data, and event data such as homicides in city neighborhoods and conflicts between countries. The fundamental results derived in this work will guide research in modeling and inference on dynamic networks and will serve as a benchmark for future work.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
建模和分析空间确定和时变(时空)相互作用是许多科学和工程学科研究的前沿,包括社会和行为科学,交通,医疗保健,经济学和流行病学。 该项目将实体的时空交互表示为动态复杂网络,旨在开发用于建模,分析和监控动态交互的方法。这项工作中开发的方法将为威胁检测相关问题提供可扩展的解决方案,包括通过人类邻近网络了解疾病和病毒的传播,通过地理标记的社交媒体数据了解人类迁移模式,以及通过智能城市中的视频片段和传感器日志监控多模式城市移动网络。研究生和本科生将通过参与研究进行跨学科数据科学培训。新的数据结构,模型,和时空网络的操作和分析算法将在广泛使用的NetworkX Python包中实现。该项目旨在通过开发新的模型和方法来表示,监测和预测时空网络分析领域。该研究引入了新的问题公式,新的分析方法和新的算法技术的实施。该项目有三个主要目标。首先,该项目将在潜在双曲空间中开发一个动态嵌入模型来表示时空网络。该模型能够跟踪网络级和实体对级的拓扑变化。接下来,该项目将研究基于多分辨率指数随机图模型的网络监控框架,以监控复杂时空系统的实时异常和威胁。第三,该项目将在时空网络中的参与者集合上开发一个多变量点过程,以模拟空间中不同区域的时间戳定向事件。该项目旨在建立一个综合框架,利用多模式网络监测技术,同时监测系统风险和检测系统面临的迫在眉睫的威胁。正在开发的技术将用于监测大量时空数据积累所产生的复杂系统,包括通过物理接近进行的人类接触数据、社交媒体数据以及城市街区凶杀案和国家间冲突等事件数据。在这项工作中得出的基本成果将指导研究在建模和推理的动态网络,并将作为一个基准,为未来的工作。这个奖项反映了NSF的法定使命,并已被认为是值得的支持,通过评估使用基金会的知识价值和更广泛的影响审查标准。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Varying-coefficient models for dynamic networks
  • DOI:
    10.1016/j.csda.2020.107052
  • 发表时间:
    2017-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jihui Lee;Gen Li;James D. Wilson
  • 通讯作者:
    Jihui Lee;Gen Li;James D. Wilson
A RANDOM EFFECTS STOCHASTIC BLOCK MODEL FOR JOINT COMMUNITY DETECTION IN MULTIPLE NETWORKS WITH APPLICATIONS TO NEUROIMAGING
  • DOI:
    10.1214/20-aoas1339
  • 发表时间:
    2020-06-01
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Paul, Subhadeep;Chen, Yuguo
  • 通讯作者:
    Chen, Yuguo
Null Models and Community Detection in Multi-Layer Networks
多层网络中的空模型和社区检测
  • DOI:
    10.1007/s13171-021-00257-0
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Paul, Subhadeep;Chen, Yuguo
  • 通讯作者:
    Chen, Yuguo
A Hierarchical Latent Space Network Model for Population Studies of Functional Connectivity
  • DOI:
    10.1007/s42113-020-00080-0
  • 发表时间:
    2020-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    James D. Wilson;Skyler J. Cranmer;Zhonglin Lu
  • 通讯作者:
    James D. Wilson;Skyler J. Cranmer;Zhonglin Lu
A Permutation-Based Changepoint Technique for Monitoring Effect Sizes
  • DOI:
    10.1017/pan.2020.44
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    D. Kent;James D. Wilson;Skyler J. Cranmer
  • 通讯作者:
    D. Kent;James D. Wilson;Skyler J. Cranmer
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Subhadeep Paul其他文献

Cobalt(III) Dibromo-BODIPY-8-Hydroxyquinolinate for Mitochondria-Targeted Red Light Photodynamic Therapy
用于线粒体靶向红光光动力疗法的二溴-BODIPY-8-羟基喹啉钴(III)
  • DOI:
    10.1016/j.poly.2023.116656
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    A. Jana;Subhadarsini Sahoo;Subhadeep Paul;Somarupa Sahoo;C. Jayabaskaran;A. Chakravarty
  • 通讯作者:
    A. Chakravarty
Consistent Community Detection in Continuous-Time Networks of Relational Events
关系事件连续时间网络中的一致社区检测
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Makan Arastuie;Subhadeep Paul;Kevin S. Xu
  • 通讯作者:
    Kevin S. Xu
Investigation of net-charge fluctuation for the particle yields in PbPb collisions at $$\sqrt{s_{NN}}$$ = 5.5 TeV using AMPT model
  • DOI:
    10.1140/epjp/s13360-024-05852-2
  • 发表时间:
    2024-12-04
  • 期刊:
  • 影响因子:
    2.900
  • 作者:
    Subhadeep Paul;Tumpa Biswas;Dibakar Dhar;Zubayer Ahammed;Prabir Kumar Haldar
  • 通讯作者:
    Prabir Kumar Haldar
Scalable and Consistent Estimation in Continuous-time Networks of Relational Events
关系事件连续时间网络中的可扩展且一致的估计
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Makan Arastuie;Subhadeep Paul;Kevin S. Xu
  • 通讯作者:
    Kevin S. Xu
On second order efficient robust inference
关于二阶高效鲁棒推理
  • DOI:
    10.1016/j.csda.2015.02.008
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Subhadeep Paul;A. Basu
  • 通讯作者:
    A. Basu

Subhadeep Paul的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219956
  • 财政年份:
    2023
  • 资助金额:
    $ 14.17万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: a-DMIT: a novel Distributed, MultI-channel, Topology-aware online monitoring framework of massive spatiotemporal data
合作研究:ATD:a-DMIT:一种新颖的分布式、多通道、拓扑感知的海量时空数据在线监测框架
  • 批准号:
    2220495
  • 财政年份:
    2023
  • 资助金额:
    $ 14.17万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319370
  • 财政年份:
    2023
  • 资助金额:
    $ 14.17万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建​​模和风险缓解
  • 批准号:
    2319552
  • 财政年份:
    2023
  • 资助金额:
    $ 14.17万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219904
  • 财政年份:
    2023
  • 资助金额:
    $ 14.17万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319371
  • 财政年份:
    2023
  • 资助金额:
    $ 14.17万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319372
  • 财政年份:
    2023
  • 资助金额:
    $ 14.17万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建​​模和风险缓解
  • 批准号:
    2319551
  • 财政年份:
    2023
  • 资助金额:
    $ 14.17万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
  • 批准号:
    2220523
  • 财政年份:
    2023
  • 资助金额:
    $ 14.17万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
  • 批准号:
    2220529
  • 财政年份:
    2023
  • 资助金额:
    $ 14.17万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了