RII Track-4: Time-Resolved Mossbauer Spectroscopy, a New Tool for Investigating Ultrafast Dynamics in Solid-State Photocatalytic and Photovoltaic Materials

RII Track-4:时间分辨穆斯堡尔光谱,研究固态光催化和光伏材料超快动力学的新工具

基本信息

  • 批准号:
    1832944
  • 负责人:
  • 金额:
    $ 14.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-10-01 至 2021-09-30
  • 项目状态:
    已结题

项目摘要

Nontechnical DescriptionImproving the function of solar harvesting devices made from cheap, durable materials is necessary to make solar technology an integral part of a clean, renewable energy strategy. The efficiency of a photovoltaic or photocatalytic device is generally determined by events that occur within the first few picoseconds to nanoseconds following absorption of light, and thus a thorough understanding of electronic and chemical dynamics on this ultrafast timescale is crucial for guiding the design of next-generation materials. Transient absorption spectroscopy has long been deployed to this end, wherein an ultrashort laser pump pulse synchronously launches processes in a sample and a probe pulse reports on the state of the system at a later time. But while this approach has proven enormously successful in providing molecular movies of reactions in solution, laser-induced heating inevitably gives rise to spurious signals in solid-state materials. This project aims to solve that dilemma by pioneering an entirely new ultrafast X-ray technique that probes atomic nuclei instead of electrons. Because this technique requires the exceptionally bright X-ray pulses provided by large-scale storage ring light sources, this work will be performed at the Advanced Photon Source at Argonne National Laboratory. A residency at this world-class facility will provide the University of Rhode Island research team the unique opportunity to demonstrate TRSRM for the first time and track the formation of short-lived chemical species in several solid-state solar energy conversion materials.Technical Description Recent work in ultrafast optical and X-ray transient absorption spectroscopy has highlighted the deficiencies of these traditional approaches for studying photochemical dynamics in the solid-state due to the presence of massive thermal artifacts that arise from laser-induced heating. This project aims to develop and demonstrate time-resolved synchrotron radiation M?ssbauer spectroscopy (TRSRM), a novel and difficult X-ray technique that will provide an unambiguous probe of excited state dynamics in a wide variety of solid-state photocatalytic and photovoltaic materials, including hematite, iron titanate, and organolead halide perovskites. M?ssbauer spectroscopy retains element specificity and oxidation/spin state sensitivity of X-ray techniques while boasting exceptionally narrow linewidths, straightforward assignments, and most importantly for ultrafast implementation of the technique a relative insensitivity to large thermal variations. TRSRM may also be performed under electrochemical working conditions, an absolute requirement for investigating the function of photoelectrochemical materials such as hematite. By providing clear mechanistic insight into how these materials function, this work will pave the way for critical assessments (and reassessments) of the chemical and physical properties that enhance or diminish performance in many photoactive materials and guide the efforts of materials engineers to improve solar energy conversion efficiency through rational design. Because TRSRM can only be performed at a time-resolved hard X-ray spectroscopy beamline, the research team will travel to the Advanced Photon Source to prepare and execute the initial experiments. Following successful demonstration of picosecond-resolved TRSRM, the team will seek to identify not only transient species but also transition states in solid-state materials through femtosecond-resolved TRSRM at hard X-ray free electron laser facilities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性描述改进由廉价、耐用材料制成的太阳能收集装置的功能是使太阳能技术成为清洁、可再生能源战略的一个组成部分所必需的。光伏或光催化器件的效率通常由光吸收后最初几皮秒至纳秒内发生的事件决定,因此,对这种超快时间尺度上的电子和化学动力学的透彻理解对于指导下一代材料的设计至关重要。瞬态吸收光谱学长期以来一直被用于这一目的,其中超短激光泵浦脉冲同步地启动样品中的过程,并且探测脉冲在稍后的时间报告系统的状态。但是,虽然这种方法在提供溶液中反应的分子电影方面取得了巨大的成功,但激光诱导加热不可避免地会在固态材料中产生虚假信号。该项目旨在通过开创一种全新的超快X射线技术来解决这一困境,该技术探测原子核而不是电子。由于这项技术需要由大型储存环光源提供异常明亮的X射线脉冲,这项工作将在阿贡国家实验室的高级光子源进行。在这个世界一流的设施中的驻留将为罗得岛大学的研究团队提供独特的机会,首次展示TRSRM,并跟踪几种固态太阳能转换材料中短寿命化学物质的形成。技术描述射线瞬态吸收光谱学突出了这些传统方法用于研究固体中的光化学动力学的缺陷,由于激光诱导加热产生的大量热伪影的存在,该项目的目的是开发和演示时间分辨同步辐射M?ssbauer光谱(TRSRM),一种新颖而困难的X射线技术,将提供一个明确的探测激发态动力学的各种固态光催化和光伏材料,包括赤铁矿,钛酸铁,和有机铅卤化物钙钛矿。米吗?ssbauer光谱学保留了X射线技术的元素特异性和氧化/自旋状态灵敏度,同时拥有非常窄的线宽,简单的分配,最重要的是对于该技术的超快实现,对大的热变化相对不敏感。TRSRM也可以在电化学工作条件下进行,这是研究光电化学材料(如赤铁矿)功能的绝对要求。通过对这些材料如何发挥作用提供清晰的机理见解,这项工作将为化学和物理性质的关键评估(和重新评估)铺平道路,这些化学和物理性质增强或降低了许多光活性材料的性能,并指导材料工程师通过合理设计提高太阳能转换效率。由于TRSRM只能在时间分辨硬X射线光谱光束线上进行,研究小组将前往先进光子源准备和执行初始实验。在皮秒分辨TRSRM成功演示之后,该团队将寻求在硬X射线自由电子激光设施中通过飞秒分辨TRSRM识别固态材料中的瞬态物质和过渡态。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mechanisms of the Cu(I)-Catalyzed Intermolecular Photocycloaddition Reaction Revealed by Optical and X-ray Transient Absorption Spectroscopies
  • DOI:
    10.1021/jacs.1c07282
  • 发表时间:
    2021-11-24
  • 期刊:
  • 影响因子:
    15
  • 作者:
    Jayasekara, Gethmini K.;Antolini, Cali;Hayes, Dugan
  • 通讯作者:
    Hayes, Dugan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dugan Hayes其他文献

Synthesis, structure, and excited state kinetics of heteroleptic Cu(i) complexes with a new sterically demanding phenanthroline ligand.
具有新的空间要求菲咯啉配体的杂配 Cu(i) 配合物的合成、结构和激发态动力学。
  • DOI:
    10.1039/c7dt02476b
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Lars Kohler;Ryan G. Hadt;Dugan Hayes;Lin X. Chen;Karen L. Mulfort
  • 通讯作者:
    Karen L. Mulfort
Synthesis, structure, ultrafast kinetics, and light-induced dynamics of CuHETPHEN chromophores.
CuHETPHEN 发色团的合成、结构、超快动力学和光诱导动力学。
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Lars Kohler;Dugan Hayes;Jiyun Hong;Tyler J. Carter;M. Shelby;Kelly A. Fransted;Lin X. Chen;Karen L. Mulfort
  • 通讯作者:
    Karen L. Mulfort

Dugan Hayes的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

NSF Convergence Accelerator Track L: Smartphone Time-Resolved Luminescence Imaging and Detection (STRIDE) for Point-of-Care Diagnostics
NSF 融合加速器轨道 L:用于即时诊断的智能手机时间分辨发光成像和检测 (STRIDE)
  • 批准号:
    2344476
  • 财政年份:
    2024
  • 资助金额:
    $ 14.87万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track L: Innovative chemical microsensor development for in situ, real-time monitoring of priority water pollutants to protect water quality
NSF Convergence Accelerator Track L:创新化学微传感器开发,用于对重点水污染物进行原位实时监测,以保护水质
  • 批准号:
    2344373
  • 财政年份:
    2024
  • 资助金额:
    $ 14.87万
  • 项目类别:
    Standard Grant
MRI: Track 1 Acquisition of a High-Resolution Quadrupole Time-of-Flight Mass Spectrometer with Diverse Inlet and Ionization Capabilities for Chemical Analyses
MRI:轨道 1 采购具有多种入口和电离功能的高分辨率四极杆飞行时间质谱仪,用于化学分析
  • 批准号:
    2319939
  • 财政年份:
    2023
  • 资助金额:
    $ 14.87万
  • 项目类别:
    Standard Grant
MRI: Track 1 Acquisition of a Matrix-Assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometer for Analysis of Macromolecules
MRI:轨道 1 获取用于分析大分子的基质辅助激光解吸/电离飞行时间质谱仪
  • 批准号:
    2320090
  • 财政年份:
    2023
  • 资助金额:
    $ 14.87万
  • 项目类别:
    Standard Grant
Equipment: MRI: Track 1 Acquisition of a Digital Real-Time Simulator to Enhance Research and Student Research Training in Next-Generation Engineering and Computer Science
设备: MRI:轨道 1 采购数字实时模拟器,以加强下一代工程和计算机科学的研究和学生研究培训
  • 批准号:
    2320619
  • 财政年份:
    2023
  • 资助金额:
    $ 14.87万
  • 项目类别:
    Standard Grant
IRES Track I: Development of the Neutron Optics Parity and Time Violation Experiment in Japan
IRES Track I:日本中子光学宇称和时间违反实验的进展
  • 批准号:
    2246335
  • 财政年份:
    2023
  • 资助金额:
    $ 14.87万
  • 项目类别:
    Standard Grant
Equipment: MRI Track 1: Acquisition of a Laser Ablation Time of Flight Inductively-Coupled Plasma Mass Spectrometer for UCSB Researchers and Educators
设备:MRI 轨道 1:为 UCSB 研究人员和教育工作者购买激光烧蚀飞行时间电感耦合等离子体质谱仪
  • 批准号:
    2320389
  • 财政年份:
    2023
  • 资助金额:
    $ 14.87万
  • 项目类别:
    Standard Grant
MRI: Track 1 Acquisition of a Liquid Chromatography-Electrospray Ionization-Quadrupole Time of Flight Mass Spectrometer for Central Michigan University
MRI:轨道 1 为中密歇根大学采购液相色谱-电喷雾电离-四极杆飞行时间质谱仪
  • 批准号:
    2320737
  • 财政年份:
    2023
  • 资助金额:
    $ 14.87万
  • 项目类别:
    Standard Grant
Development of solid-liquid interface total-reflection x-ray spectroscopy with the sensitivity of a few nm and its application to track reactions at solid-liquid interfaces in a real-time manner
几纳米灵敏度固液界面全反射X射线光谱仪的研制及其在实时跟踪固液界面反应中的应用
  • 批准号:
    23K11710
  • 财政年份:
    2023
  • 资助金额:
    $ 14.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
MRI Track 1: Acquisition of a Photoionization-Time of Flight Mass Spectrometer (PI-TOFMS) to Advance Environmental Research in Water, Soil, and Air
MRI 轨道 1:购买光电离飞行时间质谱仪 (PI-TOFMS) 以推进水、土壤和空气的环境研究
  • 批准号:
    2319935
  • 财政年份:
    2023
  • 资助金额:
    $ 14.87万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了