Collaborative Research: HDR: Data-Driven Earth System Modeling

合作研究:HDR:数据驱动的地球系统建模

基本信息

  • 批准号:
    1835576
  • 负责人:
  • 金额:
    $ 125万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-11-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

Global weather and climate models represent the atmosphere on computational grids with horizontal spacing of perhaps 100km, stacked in layers which can be over a kilometer thick. Such grids suffice to capture the dynamics of cyclones, fronts, and other large-scale atmospheric phenomena, but these phenomena depend critically on processes with spatial scales much smaller than the grid spacing. The small-scale processes must be represented indirectly, through parameterization schemes which estimate their net impact on the resolved atmospheric state. For example clouds are typically too small for the grid spacing yet they are critical for moving moisture from the ocean surface to the mid-troposphere, thus cloud parameterizations play a key role in determining atmospheric humidity even on the largest spatial scales. Parameterization schemes are inherently approximate, and the development of schemes which produce realistic simulations is a central challenge of model development. Shortcomings in parameterization limit the usefulness of weather and climate models both for scientific research and for societal applications.Most parameterization schemes depend critically on various parameters whose values cannot be determined a priori but must instead be found through trial and error. This task, referred to as "tuning", is laborious as it is performed separately for each parameterization scheme and involves multiple integrations of the model in multiple configurations. It is also inefficient in its use of observations, which is unfortunate given the large amount of observational data available from satellites and other sources. The resulting parameter sets may not be optimal and may produce unexpected results when all the schemes interact with each other in global simulations. Finally, manual tuning is not conducive to uncertainty quantification, which would be valuable for estimating the uncertainty in future climate change projections. The goal of this project is to replace ad hoc manual tuning with a combination of data assimilation, machine learning, and fine-scale process modeling using large eddy simulation (LES) models. LES models have grid spacings of a few tens of meters and can explicitly simulate the clouds and turbulence represented by parameterization schemes. These ingredients are combined to create a global Machine Learning Atmospheric Model (MLAM), in which LES models embedded in selected grid columns of a global model explicitly simulate subgrid-scale processes which are represented by parameterization schemes in the other columns. Machine learning is used to tune the schemes to emulate the behavior of the LES simulations, so that explicit simulations become an online benchmark for parameterization. In this way all the schemes can be tuned together and interactively within a running global simulation. Observational data from a variety of sources is assimilated during the model integration to provide a further constraint on parameter values, and estimates of parameter uncertainty are generated as part of the automated tuning. A similar tuning process is implemented in an ocean general circulation model, and the two are combined to produce a machine learning climate model. Model tuning is generally viewed as a necessary but mundane activity which is not in itself a research topic. But a model capable of learning its parameters from observations and process models offers a new path forward, toward both better models and better ways of using models.The work has broader impacts due to the societal value of better forecasts and projections from weather and climate models. The work directly addresses uncertainty in forecasts and projections used by decision makers to plan for weather and climate impacts. In addition, the modeling strategy developed here is applicable to a broad class of research areas which face the problem of relating large-scale behaviors to small-scale unresolved processes (the problem of relating genotypes to phenotypes in evolutionary biology, for example). In addition, the PIs will establish a cross-disciplinary graduate program on data-driven Earth system modeling. The program bridges the gap between environmental and computational sciences which currently hinders progress in environmental modeling.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
全球天气和气候模型在水平间距约为100公里的计算网格上表示大气层,这些网格可以堆叠成超过1公里厚的层。 这样的网格足以捕捉气旋,锋面和其他大尺度大气现象的动力学,但这些现象严重依赖于空间尺度比网格间距小得多的过程。 小尺度过程必须间接表示,通过参数化方案,估计其对解决大气状态的净影响。 例如,云通常对于网格间距来说太小,但它们对于将水分从海洋表面移动到对流层中部至关重要,因此即使在最大的空间尺度上,云参数化也在确定大气湿度方面发挥着关键作用。 参数化方案本质上是近似的,并且产生逼真模拟的方案的开发是模型开发的核心挑战。 参数化的局限性限制了天气气候模式在科学研究和社会应用中的实用性。大多数参数化方案严重依赖于各种参数,这些参数的值不能先验地确定,而必须通过试验和错误来确定。 这个任务,被称为“调整”,是费力的,因为它是单独执行每个参数化方案,并涉及多个配置中的模型的多个集成。它在利用观测数据方面也效率低下,鉴于从卫星和其他来源获得的大量观测数据,这是令人遗憾的。所得到的参数集可能不是最优的,并且当所有方案在全局模拟中彼此交互时可能产生意想不到的结果。 最后,手动调整不利于不确定性量化,这将是有价值的估计未来气候变化预测的不确定性。该项目的目标是用数据同化、机器学习和使用大涡模拟(LES)模型的精细尺度过程建模的组合来取代临时手动调整。 LES模式的网格间距为几十米,可以显式地模拟由参数化方案表示的云和湍流。 这些成分相结合,以创建一个全球机器学习大气模型(MLAM),其中嵌入在选定的网格列的全球模型的LES模型显式地模拟亚网格尺度的过程,这些过程由其他列中的参数化方案表示。机器学习用于调整方案以模拟LES模拟的行为,使得显式模拟成为参数化的在线基准。 通过这种方式,所有的方案都可以在一个运行的全局模拟中一起进行交互式调整。 来自各种来源的观测数据在模型集成过程中被同化,以提供对参数值的进一步约束,并且参数不确定性的估计作为自动调整的一部分而生成。 在海洋环流模型中实施了类似的调整过程,并将两者结合起来产生机器学习气候模型。 模型调优通常被视为一种必要但平凡的活动,其本身不是一个研究主题。 但是,一个能够从观测和过程模型中学习其参数的模型提供了一条新的前进道路,朝着更好的模型和更好的使用模型的方式。由于天气和气候模型更好的预测和预测的社会价值,这项工作具有更广泛的影响。 这项工作直接解决了决策者用于规划天气和气候影响的预测和预测中的不确定性。 此外,这里开发的建模策略适用于广泛的一类研究领域,这些领域面临着将大规模行为与小规模未解决的过程(例如,将基因型与进化生物学中的表型相关联的问题)相关联的问题。 此外,PI还将建立一个关于数据驱动的地球系统建模的跨学科研究生课程。该计划弥合了环境科学和计算科学之间的差距,目前阻碍了环境建模的进展。该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Uncertainty Quantification of Ocean Parameterizations: Application to the K‐Profile‐Parameterization for Penetrative Convection
海洋参数化的不确定性量化:应用于穿透对流的 K 剖面参数化
  • DOI:
    10.1029/2020ms002108
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Souza, A. N.;Wagner, G. L.;Ramadhan, A.;Allen, B.;Churavy, V.;Schloss, J.;Campin, J.;Hill, C.;Edelman, A.;Marshall, J.
  • 通讯作者:
    Marshall, J.
Oceananigans.jl: Fast and friendly geophysical fluid dynamics on GPUs
Oceananigans.jl:GPU 上快速且友好的地球物理流体动力学
  • DOI:
    10.21105/joss.02018
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ramadhan, Ali;Wagner, Gregory;Hill, Chris;Campin, Jean-Michel;Churavy, Valentin;Besard, Tim;Souza, Andre;Edelman, Alan;Ferrari, Raffaele;Marshall, John
  • 通讯作者:
    Marshall, John
Near-Inertial Waves and Turbulence Driven by the Growth of Swell
  • DOI:
    10.1175/jpo-d-20-0178.1
  • 发表时间:
    2021-05-01
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Wagner, Gregory L.;Chini, Gregory P.;Ferrari, Raffaele
  • 通讯作者:
    Ferrari, Raffaele
The vortex gas scaling regime of baroclinic turbulence
The Flux‐Differencing Discontinuous Galerkin Method Applied to an Idealized Fully Compressible Nonhydrostatic Dry Atmosphere
应用于理想化完全可压缩非静水干燥大气的通量差分不连续伽辽金法
  • DOI:
    10.1029/2022ms003527
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Souza, A. N.;He, J.;Bischoff, T.;Waruszewski, M.;Novak, L.;Barra, V.;Gibson, T.;Sridhar, A.;Kandala, S.;Byrne, S.
  • 通讯作者:
    Byrne, S.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Raffaele Ferrari其他文献

Genome-wide analyses reveal a potential role for the MAPT, MOBP, and APOE loci in sporadic frontotemporal dementia.
全基因组分析揭示了 MAPT、MOBP 和 APOE 位点在散发性额颞叶痴呆中的潜在作用。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Claudia Manzoni;D. Kia;Raffaele Ferrari;G. Leonenko;Beatrice Costa;Valentina Saba;Edwin Jabbari;M. Tan;D. Albani;V. Álvarez;Ignacio Alvarez;Ole A Andreassen;Antonella Angiolillo;A. Arighi;Matt Baker;L. Benussi;V. Bessi;G. Binetti;Daniel J. Blackburn;Mercè Boada;B. Boeve;S. Borrego;B. Borroni;G. Bråthen;W. Brooks;A. C. Bruni;P. Caroppo;S. Bandres;J. Clarimón;R. Colao;C. Cruchaga;Adrian Danek;Sterre C. M. de Boer;I. de Rojas;A. Di Costanzo;Dennis W. Dickson;J. Diehl‐Schmid;Carol Dobson;O. Dols;Aldo Donizetti;E. Dopper;Elisabetta Durante;C. Ferrari;G. Forloni;F. Frangipane;Laura Fratiglioni;M. Kramberger;Daniela Galimberti;Maurizio Gallucci;P. García;R. Ghidoni;G. Giaccone;Caroline Graff;N. Graff;Jordan Grafman;Glenda M Halliday;Dena G. Hernandez;L. Hjermind;John R. Hodges;G. Holloway;E. Huey;I. Illán;K. Josephs;D. Knopman;M. Kristiansen;John B. Kwok;I. Leber;H. Leonard;Ilenia Libri;A. Lleó;Ian R. A. Mackenzie;G. Madhan;R. Maletta;M. Marquié;A. Maver;M. Menéndez;Graziella Milan;Bruce L. Miller;Christopher M. Morris;Huw R. Morris;B. Nacmias;J. Newton;Jørgen E. Nielsen;Christer Nilsson;V. Novelli;Alessandro Padovani;S. Pal;F. Pasquier;P. Pástor;Robert Perneczky;B. Peterlin;R. C. Petersen;Olivier Piguet;Y. Pijnenburg;A. Puca;R. Rademakers;I. Rainero;L. Reus;A. Richardson;Matthias Riemenschneider;E. Rogaeva;Boris Rogelj;S. Rollinson;H. Rosen;G. Rossi;James B. Rowe;E. Rubino;Agustin Ruiz;Erika Salvi;R. Sánchez;S. Sando;A. Santillo;Jennifer A. Saxon;Johannes CM. Schlachetzki;S. Scholz;H. Seelaar;W. Seeley;M. Serpente;S. Sorbi;S. Sordon;Peter St. George;Jennifer C. Thompson;C. van Broeckhoven;V. V. Van Deerlin;S. J. van der Lee;J. V. van Swieten;Fabrizio Tagliavini;J. van der Zee;Arianna Veronesi;Emilia Vitale;M. L. Waldo;Jennifer S. Yokoyama;Mike A Nalls;P. Momeni;Andy Singleton;John Hardy;Valentina Escott
  • 通讯作者:
    Valentina Escott
Observations of diapycnal upwelling within a sloping submarine canyon
倾斜海底峡谷内垂向上升流的观测
  • DOI:
    10.1038/s41586-024-07411-2
  • 发表时间:
    2024-06-26
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Bethan L. Wynne-Cattanach;Nicole Couto;Henri F. Drake;Raffaele Ferrari;Arnaud Le Boyer;Herlé Mercier;Marie-José Messias;Xiaozhou Ruan;Carl P. Spingys;Hans van Haren;Gunnar Voet;Kurt Polzin;Alberto C. Naveira Garabato;Matthew H. Alford
  • 通讯作者:
    Matthew H. Alford
Genome-wide analyses reveal a potential role for the emMAPT/em, emMOBP/em, and emAPOE/em loci in sporadic frontotemporal dementia
全基因组分析揭示了 emMAPT/em、emMOBP/em 和 emAPOE/em 位点在散发性额颞痴呆中的潜在作用
  • DOI:
    10.1016/j.ajhg.2024.05.017
  • 发表时间:
    2024-07-11
  • 期刊:
  • 影响因子:
    8.100
  • 作者:
    Claudia Manzoni;Demis A. Kia;Raffaele Ferrari;Ganna Leonenko;Beatrice Costa;Valentina Saba;Edwin Jabbari;Manuela MX. Tan;Diego Albani;Victoria Alvarez;Ignacio Alvarez;Ole A. Andreassen;Antonella Angiolillo;Andrea Arighi;Matt Baker;Luisa Benussi;Valentina Bessi;Giuliano Binetti;Daniel J. Blackburn;Merce Boada;Valentina Escott-Price
  • 通讯作者:
    Valentina Escott-Price
Direct Estimate of Lateral Eddy Diffusivity Upstream of the Drake Passage
德雷克海峡上游横向涡流扩散率的直接估计
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rosstulloch;Raffaele Ferrari;Oliver Jahn;A. Klocker;Jim Ledwell;John Marshall;Kevin Speer;Andrew Watson
  • 通讯作者:
    Andrew Watson
The evolving butterfly: Statistics in a changing attractor
不断进化的蝴蝶:不断变化的吸引子中的统计数据
  • DOI:
    10.1016/j.physd.2024.134107
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gosha Geogdzhayev;Andre N. Souza;Raffaele Ferrari
  • 通讯作者:
    Raffaele Ferrari

Raffaele Ferrari的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Raffaele Ferrari', 18)}}的其他基金

2019 Graduate Climate Conference; Woods Hole, Massachusetts; November 7-10, 2019
2019年研究生气候会议;
  • 批准号:
    1929918
  • 财政年份:
    2019
  • 资助金额:
    $ 125万
  • 项目类别:
    Standard Grant
Collaborative Research: Bottom Boundary Layer Turbulent and Abyssal Recipes
合作研究:底部边界层湍流和深渊配方
  • 批准号:
    1756324
  • 财政年份:
    2018
  • 资助金额:
    $ 125万
  • 项目类别:
    Continuing Grant
Collaborative Research: Deep Circulation over the Flanks of a Mid-Ocean Ridge
合作研究:大洋中脊两侧的深层环流
  • 批准号:
    1736109
  • 财政年份:
    2017
  • 资助金额:
    $ 125万
  • 项目类别:
    Standard Grant
2017 Graduate Climate Conference; Woods Hole, Massachusetts; November 10-12, 2017
2017年研究生气候会议;
  • 批准号:
    1727575
  • 财政年份:
    2017
  • 资助金额:
    $ 125万
  • 项目类别:
    Standard Grant
Collaborative Research: An Ocean Tale of Two Climates: Modern and Last Glacial Maximum
合作研究:两种气候的海洋故事:现代和末次盛冰期
  • 批准号:
    1536515
  • 财政年份:
    2015
  • 资助金额:
    $ 125万
  • 项目类别:
    Standard Grant
2015 Graduate Climate Conference (GCC); Woods Hole, Massachusetts; November 6-8, 2015
2015年研究生气候会议(GCC);
  • 批准号:
    1542590
  • 财政年份:
    2015
  • 资助金额:
    $ 125万
  • 项目类别:
    Standard Grant
Collaborative Research: Diagnosing Eddy mixing in DIMES
合作研究:诊断 DIMES 中的涡流混合
  • 批准号:
    1233832
  • 财政年份:
    2012
  • 资助金额:
    $ 125万
  • 项目类别:
    Standard Grant
Collaborative Research: Forcing and the North Atlantic Spring Bloom
合作研究:强迫和北大西洋春季水华
  • 批准号:
    1155205
  • 财政年份:
    2012
  • 资助金额:
    $ 125万
  • 项目类别:
    Standard Grant
2011 Graduate Climate Conference on Climate and Climate Change in an Array of Disciplines; Woods Hole, MA; October 28-30, 2011
2011 年气候与气候变化多个学科研究生气候会议;
  • 批准号:
    1146864
  • 财政年份:
    2011
  • 资助金额:
    $ 125万
  • 项目类别:
    Standard Grant
CMG COLLABORATIVE RESEARCH: From internal waves to mixing in the ocean
CMG 合作研究:从内波到海洋中的混合
  • 批准号:
    1024198
  • 财政年份:
    2010
  • 资助金额:
    $ 125万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

HDR DSC: Collaborative Research: Creating and Integrating Data Science Corps to Improve the Quality of Life in Urban Areas
HDR DSC:协作研究:创建和整合数据科学团队以提高城市地区的生活质量
  • 批准号:
    2321574
  • 财政年份:
    2023
  • 资助金额:
    $ 125万
  • 项目类别:
    Standard Grant
HDR DSC: Collaborative Research: The Data Science WAV: Experiential Learning with Local Community Organizations
HDR DSC:协作研究:数据科学 WAV:与当地社区组织的体验式学习
  • 批准号:
    2242944
  • 财政年份:
    2022
  • 资助金额:
    $ 125万
  • 项目类别:
    Standard Grant
Collaborative Research: HDR DSC: Infusion of data science and computation into engineering curricula
合作研究:HDR DSC:将数据科学和计算融入工程课程
  • 批准号:
    2123237
  • 财政年份:
    2021
  • 资助金额:
    $ 125万
  • 项目类别:
    Standard Grant
Collaborative Research: HDR DSC: Increasing Accessibility through Building Alternative Data Science Pathways
合作研究:HDR DSC:通过构建替代数据科学途径提高可访问性
  • 批准号:
    2123259
  • 财政年份:
    2021
  • 资助金额:
    $ 125万
  • 项目类别:
    Continuing Grant
Collaborative Research: HDR DSC: The Metropolitan Chicago Data Science Corps (MCDC): Learning from Data to Support Communities
合作研究:HDR DSC:芝加哥大都会数据科学队 (MCDC):从数据中学习以支持社区
  • 批准号:
    2123486
  • 财政年份:
    2021
  • 资助金额:
    $ 125万
  • 项目类别:
    Standard Grant
Collaborative Research: HDR DSC: Increasing Accessibility through Building Alternative Data Science Pathways
合作研究:HDR DSC:通过构建替代数据科学途径提高可访问性
  • 批准号:
    2123260
  • 财政年份:
    2021
  • 资助金额:
    $ 125万
  • 项目类别:
    Continuing Grant
Collaborative Research: HDR DSC: The Metropolitan Chicago Data Science Corps (MCDC): Learning from Data to Support Communities
合作研究:HDR DSC:芝加哥大都会数据科学队 (MCDC):从数据中学习以支持社区
  • 批准号:
    2123447
  • 财政年份:
    2021
  • 资助金额:
    $ 125万
  • 项目类别:
    Continuing Grant
Collaborative Research: Framework: Data: NSCI: HDR: GeoSCIFramework: Scalable Real-Time Streaming Analytics and Machine Learning for Geoscience and Hazards Research
协作研究:框架:数据:NSCI:HDR:GeoSCIFramework:用于地球科学和灾害研究的可扩展实时流分析和机器学习
  • 批准号:
    2219975
  • 财政年份:
    2021
  • 资助金额:
    $ 125万
  • 项目类别:
    Standard Grant
Collaborative Research: HDR DSC: Building Capacity in Data Science through Biodiversity, Conservation, and General Education
合作研究:HDR DSC:通过生物多样性、保护和通识教育建设数据科学能力
  • 批准号:
    2122991
  • 财政年份:
    2021
  • 资助金额:
    $ 125万
  • 项目类别:
    Standard Grant
Collaborative Research: HDR DSC: Infusion of Data Science and Computation into Engineering Curricula
合作研究:HDR DSC:将数据科学和计算融入工程课程
  • 批准号:
    2123244
  • 财政年份:
    2021
  • 资助金额:
    $ 125万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了