CPS: Medium: Collaborative Research: Certifiable reinforcement learning for cyber-physical systems
CPS:媒介:协作研究:网络物理系统的可认证强化学习
基本信息
- 批准号:1836819
- 负责人:
- 金额:$ 66.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We propose to generalize and certify the performance of reinforcement learning algorithms for control of cyber-physical systems (CPS). Broadly speaking, reinforcement learning applied to physical systems is concerned with making predictions from data to control the system to extremize a performance criterion. The project will particularly focus on developing theory and algorithms applicable to hybrid and multi-agent control systems, that is, systems with continuous and discrete elements and systems with multiple decision-making agents, which are ubiquitous in CPS across spatiotemporal scales and application domains. Reinforcement learning algorithms are not yet mature enough to guarantee performance when applied to control of CPS. In light of these limitations, this project aims to lay the theoretical and computational foundation to certify reinforcement learning algorithms so that they may be deployed in society with high confidence.This project will certify reinforcement learning algorithms that compute optimal control policies in systems with non-classical dynamics and non-classical costs. To achieve this goal, we will generalize convergent algorithms originally designed for purely continuous systems to apply in hybrid control systems whose states undergo a mixture of discrete and continuous transitions. Moreover, we specifically aim to ensure this approach is applicable to societal-scale CPS in which multiple agents, some of which may be humans, interact directly with the CPS. These algorithms will be experimentally validated on three testbeds that represent a range of hybrid and multi-agent phenomena that arise in CPS. The first testbed will test the performance of our algorithms on societal-scale traffic flow networks via simulation. The second testbed will consider heterogeneous teams of aerial and terrestrial mobile robots collaborating with human partners to perform construction, inspection, and maintenance tasks on scale facsimiles of infrastructure like bridges, and tunnels. The third testbed will study the closed-loop interaction between individual humans and remote, teleoperated robots that perform dynamic locomotion and manipulation behaviors. This project will also co-organize an interdisciplinary workshop with technology policy experts, the results of which will form the basis for an interdisciplinary multi-campus graduate-level seminar run by the PIs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
我们建议推广和证明用于控制网络物理系统(CPS)的强化学习算法的性能。从广义上讲,应用于物理系统的强化学习涉及从数据中做出预测,以控制系统以达到性能标准的极值。该项目将特别侧重于开发适用于混合和多智能体控制系统的理论和算法,即具有连续和离散元素的系统以及具有多个决策代理的系统,这些系统在跨时空尺度和应用领域的CPS中无处不在。强化学习算法还不够成熟,无法保证应用于CPS控制时的性能。鉴于这些局限性,本项目旨在为验证强化学习算法奠定理论和计算基础,使其能够高信心地部署到社会中。该项目将验证在非经典动力学和非经典成本系统中计算最优控制策略的强化学习算法。为了实现这一目标,我们将推广最初为纯连续系统设计的收敛算法,以应用于状态经历离散和连续过渡混合的混合控制系统。此外,我们特别致力于确保这种方法适用于社会规模的CPS,其中多个代理(其中一些可能是人类)直接与CPS交互。这些算法将在三个试验台上进行实验验证,这些试验台代表了CPS中出现的一系列混合和多智能体现象。第一个测试平台将通过模拟测试我们的算法在社会规模交通流网络上的性能。第二个试验台将考虑由空中和地面移动机器人组成的异类团队与人类合作,在桥梁和隧道等基础设施的规模复制品上执行施工、检查和维护任务。第三个试验台将研究个人与远程遥控机器人之间的闭环交互,这些机器人执行动态运动和操作行为。该项目还将与技术政策专家共同举办一个跨学科讲习班,其结果将成为由政策研究所举办的跨学科多校区研究生水平研讨会的基础。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Convergence Analysis of Gradient-Based Learning in Continuous Games
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Benjamin J. Chasnov;L. Ratliff;Eric V. Mazumdar;Samuel A. Burden
- 通讯作者:Benjamin J. Chasnov;L. Ratliff;Eric V. Mazumdar;Samuel A. Burden
Implicit Learning Dynamics in Stackelberg Games: Equilibria Characterization, Convergence Analysis, and Empirical Study
- DOI:
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:Tanner Fiez;Benjamin J. Chasnov;L. Ratliff
- 通讯作者:Tanner Fiez;Benjamin J. Chasnov;L. Ratliff
Stackelberg Actor-Critic: A Game-Theoretic Perspective
斯塔克尔伯格演员评论家:博弈论的视角
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Zheng, Liyuan;Fiez, Tanner;Alumbaugh, Zane;Chasnov, Benjamin;Ratliff, Lillian J.
- 通讯作者:Ratliff, Lillian J.
Experiments with sensorimotor games in dynamic human/machine interaction
动态人机交互中的感觉运动游戏实验
- DOI:10.1117/12.2519258
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Chasnov, Benjamin;Yamagami, Momona;Parsa, Behnoosh;Ratliff, Lillian J.;Burden, Samuel A.
- 通讯作者:Burden, Samuel A.
Stackelberg Actor-Critic: Game-Theoretic Reinforcement Learning Algorithms
- DOI:10.1609/aaai.v36i8.20908
- 发表时间:2021-09
- 期刊:
- 影响因子:0
- 作者:Liyuan Zheng;Tanner Fiez;Zane Alumbaugh;Benjamin J. Chasnov;L. Ratliff
- 通讯作者:Liyuan Zheng;Tanner Fiez;Zane Alumbaugh;Benjamin J. Chasnov;L. Ratliff
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sam Burden其他文献
Hyperamylasaemia: pathognomonic to pancreatitis?
高淀粉酶:胰腺炎的特征?
- DOI:
10.1136/bcr-2013-009567 - 发表时间:
2013 - 期刊:
- 影响因子:0.9
- 作者:
Sam Burden;A. Poon;Kausar Masood;M. Didi - 通讯作者:
M. Didi
Sam Burden的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sam Burden', 18)}}的其他基金
4th IFAC Workshop on Cyber-Physical-Human Systems
第四届 IFAC 网络-物理-人类系统研讨会
- 批准号:
2216526 - 财政年份:2022
- 资助金额:
$ 66.63万 - 项目类别:
Standard Grant
CAREER: Human/Machine Collaborative Learning and Control of Contact-Rich Dynamics
职业:人/机协作学习和接触丰富的动力学控制
- 批准号:
2045014 - 财政年份:2021
- 资助金额:
$ 66.63万 - 项目类别:
Standard Grant
NRI: FND: COLLAB: Design of dynamic multibehavioral robots: new tools to consider design tradeoff and enable more capable robotic systems
NRI:FND:COLLAB:动态多行为机器人的设计:考虑设计权衡并实现功能更强大的机器人系统的新工具
- 批准号:
1924303 - 财政年份:2019
- 资助金额:
$ 66.63万 - 项目类别:
Standard Grant
CRII: CPS: Provably-safe Interventions for Human-Cyber-Physical Systems (HCPS)
CRII:CPS:可证明安全的人类网络物理系统干预措施 (HCPS)
- 批准号:
1565529 - 财政年份:2016
- 资助金额:
$ 66.63万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
- 批准号:
2322534 - 财政年份:2024
- 资助金额:
$ 66.63万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
- 批准号:
2322533 - 财政年份:2024
- 资助金额:
$ 66.63万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
- 批准号:
2311084 - 财政年份:2023
- 资助金额:
$ 66.63万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
- 批准号:
2312092 - 财政年份:2023
- 资助金额:
$ 66.63万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Enabling Data-Driven Security and Safety Analyses for Cyber-Physical Systems
协作研究:CPS:中:为网络物理系统实现数据驱动的安全和安全分析
- 批准号:
2414176 - 财政年份:2023
- 资助金额:
$ 66.63万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: An Online Learning Framework for Socially Emerging Mixed Mobility
协作研究:CPS:媒介:社会新兴混合出行的在线学习框架
- 批准号:
2401007 - 财政年份:2023
- 资助金额:
$ 66.63万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Mutualistic Cyber-Physical Interaction for Self-Adaptive Multi-Damage Monitoring of Civil Infrastructure
合作研究:CPS:中:土木基础设施自适应多损伤监测的互信息物理交互
- 批准号:
2305882 - 财政年份:2023
- 资助金额:
$ 66.63万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Robust Sensing and Learning for Autonomous Driving Against Perceptual Illusion
CPS:中:协作研究:针对自动驾驶对抗知觉错觉的鲁棒感知和学习
- 批准号:
2235231 - 财政年份:2023
- 资助金额:
$ 66.63万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Sensor Attack Detection and Recovery in Cyber-Physical Systems
合作研究:CPS:中:网络物理系统中的传感器攻击检测和恢复
- 批准号:
2333980 - 财政年份:2023
- 资助金额:
$ 66.63万 - 项目类别:
Standard Grant
CPS Medium: Collaborative Research: Physics-Informed Learning and Control of Passive and Hybrid Conditioning Systems in Buildings
CPS 媒介:协作研究:建筑物中被动和混合空调系统的物理信息学习和控制
- 批准号:
2241796 - 财政年份:2023
- 资助金额:
$ 66.63万 - 项目类别:
Standard Grant