BIGDATA: F: Algorithms for Tensor-Based Modeling of Large Scale Structured Data
BIGDATA:F:大规模结构化数据基于张量的建模算法
基本信息
- 批准号:1837985
- 负责人:
- 金额:$ 141.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project aims to develop efficient algorithms for big data applications by exploiting its rich structure. Big data often contains higher-dimensional arrays. One dimensional arrays are vectors and two dimensional arrays are matrices. Arrays of dimension three or more are called tensors and have a complex structure. Some of the challenges that the research team will address are noise removal, recovery of missing data by inference and data size reduction by distilling relevant information. The resulting methods will be applied to early detection of sepsis, which contributes to the death of 200,000 people in the United States every year.Most algorithms for low rank structured tensors are based on the Canonical Polyadic decomposition (also known as CP, Parafac or Candecomp). These algorithms may converge slowly, are numerically unstable and are difficult to scale to big data. The theoretical framework for tensor decompositions that is used is based on an algebraic graphical calculus that utilizes colored Brauer diagrams to obtain explicit formulas. The graphical calculus will also be used to give accurate estimates for the computational and memory complexity of these algorithms. The investigators will design efficient, numerically stable and computationally feasible algorithms for crucial tensor operations that are widely applicable to big data applications. Specifically, the project isexpected to create fast, scalable and reliable algorithms for tensor analysis, and apply them to crucial big data tasks including noise removal, dimension reduction, imputation of missing data and classification in a variety of applications with structured data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在通过利用其丰富的结构为大数据应用开发高效的算法。大数据通常包含更高维的数组。一维数组是向量,二维数组是矩阵。三维或三维以上的数组称为张量,具有复杂的结构。研究团队将解决的一些挑战是消除噪声,通过推理恢复丢失的数据,以及通过提取相关信息来减少数据大小。由此产生的方法将被应用于败血症的早期检测,败血症每年导致美国20万人死亡。大多数低秩结构张量的算法都是基于典型多进分解(也称为CP,Parafac或Candecomp)。这些算法可能收敛缓慢,数值不稳定,并且难以扩展到大数据。所使用的张量分解的理论框架是基于代数图形演算,利用彩色布劳尔图获得明确的公式。图形演算也将被用来准确估计这些算法的计算和内存的复杂性。研究人员将为广泛适用于大数据应用的关键张量运算设计高效、数值稳定和计算可行的算法。具体而言,该项目有望为张量分析创建快速,可扩展和可靠的算法,并将其应用于关键的大数据任务,包括去噪,降维,该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查进行评估来支持的搜索.
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Algebraic Methods for Tensor Data
张量数据的代数方法
- DOI:10.1137/19m1272494
- 发表时间:2021
- 期刊:
- 影响因子:1.2
- 作者:Tokcan, Neriman;Gryak, Jonathan;Najarian, Kayvan;Derksen, Harm
- 通讯作者:Derksen, Harm
Quadratic Multilinear Discriminant Analysis for Tensorial Data Classification
- DOI:10.3390/a16020104
- 发表时间:2023-02-01
- 期刊:
- 影响因子:2.3
- 作者:Minoccheri,Cristian;Alge,Olivia;Derksen,Harm
- 通讯作者:Derksen,Harm
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kayvan Najarian其他文献
Self-Reported Sleep Quality and Same-Day Ratings of Health-Related Quality of Life in Individuals With SCI
- DOI:
10.1016/j.apmr.2019.08.064 - 发表时间:
2019-10-01 - 期刊:
- 影响因子:
- 作者:
Noelle Carlozzi;Nicholas Boileau;Ivan Molton;Dawn Ehde;Kayvan Najarian;Jennifer Miner;Anna Kratz - 通讯作者:
Anna Kratz
Identification of digital twins to guide interpretable AI for diagnosis and prognosis in heart failure
识别数字孪生以指导心力衰竭诊断和预后的可解释人工智能
- DOI:
10.1038/s41746-025-01501-9 - 发表时间:
2025-02-18 - 期刊:
- 影响因子:15.100
- 作者:
Feng Gu;Andrew J. Meyer;Filip Ježek;Shuangdi Zhang;Tonimarie Catalan;Alexandria Miller;Noah A. Schenk;Victoria E. Sturgess;Domingo Uceda;Rui Li;Emily Wittrup;Xinwei Hua;Brian E. Carlson;Yi-Da Tang;Farhan Raza;Kayvan Najarian;Scott L. Hummel;Daniel A. Beard - 通讯作者:
Daniel A. Beard
796: COMPUTER VISION MEASUREMENT OF DISEASE SEVERITY DISTRIBUTION OUTPERFORMS TRADITIONAL ENDOSCOPIC SCORING FOR DETECTING THERAPEUTIC RESPONSE IN A CLINICAL TRIAL OF USTEKINUMAB FOR ULCERATIVE COLITIS
- DOI:
10.1016/s0016-5085(22)60462-1 - 发表时间:
2022-05-01 - 期刊:
- 影响因子:
- 作者:
Ryan Stidham;Heming Yao;Reza Soroushmehr;Jonathan Gryak;Tadd Hiatt;Michael D. Rice;Shrinivas Bishu;Louis R. Ghanem;Aleksandar Stojmirovic;Jan Wehkamp;Xiaoying Wu;Najat Khan;Kayvan Najarian - 通讯作者:
Kayvan Najarian
353 AUTOMATED DIGITAL ULCER QUANTITATION IN COLONOSCOPY IS BETTER ASSOCIATED WITH CLINICAL REMISSION THAN CONVENTIONAL ENDOSCOPIC SCORING IN CROHN'S DISEASE
- DOI:
10.1016/s0016-5085(23)01106-x - 发表时间:
2023-05-01 - 期刊:
- 影响因子:
- 作者:
Ryan Stidham;Shuyang Cheng;Lingrui Cai;Flora Rajaei;Cristian Minoccheri;Tadd Hiatt;Michael D. Rice;Shrinivas Bishu;Jan Wehkamp;Weiwei Schultz;Xiaoying Wu;Najat Khan;Tommaso Mansi;Aleksandar Stojmirovic;Louis R. Ghanem;Kayvan Najarian - 通讯作者:
Kayvan Najarian
Mo1736 PREDICTING REMISSION EARLY IN ULCERATIVE COLITIS CLINICAL TRIALS USING COMPUTER VISION ANALYSIS OF ENDOSCOPIC VIDEO
- DOI:
10.1016/s0016-5085(23)03046-9 - 发表时间:
2023-05-01 - 期刊:
- 影响因子:
- 作者:
Ryan Stidham;Cristian Minoccheri;Sophia Tesic;Lingrui Cai;Shuyang Cheng;Flora Rajaei;Tadd Hiatt;Michael D. Rice;Shrinivas Bishu;Jan Wehkamp;Najat Khan;Tommaso Mansi;Xiaoying Wu;Weiwei Schultz;Aleksandar Stojmirovic;Louis R. Ghanem;Kayvan Najarian - 通讯作者:
Kayvan Najarian
Kayvan Najarian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kayvan Najarian', 18)}}的其他基金
IUCRC Phase I University of Michigan Ann Arbor: Center for Data-Driven Drug Development and Treatment Assessment (DATA)
IUCRC 第一阶段密歇根大学安娜堡分校:数据驱动药物开发和治疗评估中心 (DATA)
- 批准号:
2209546 - 财政年份:2022
- 资助金额:
$ 141.89万 - 项目类别:
Continuing Grant
IUCRC Planning Grant University of Michigan – Ann Arbor (UM): Center for Secured Computation for Drug Discovery and Repurposing (SCDDR)
IUCRC 规划拨款密歇根大学 – 安娜堡 (UM):药物发现和再利用安全计算中心 (SCDDR)
- 批准号:
2051997 - 财政年份:2021
- 资助金额:
$ 141.89万 - 项目类别:
Standard Grant
SCH: INT: Improving Care for Heart Failure Patients Using Tropical Geometry and Soft Computing
SCH:INT:利用热带几何和软计算改善心力衰竭患者的护理
- 批准号:
2014003 - 财政年份:2020
- 资助金额:
$ 141.89万 - 项目类别:
Standard Grant
SCH: INT: Data-In-Motion Prediction and Assessment of Acute Respiratory Distress Syndrome
SCH:INT:急性呼吸窘迫综合征的动态数据预测和评估
- 批准号:
1722801 - 财政年份:2017
- 资助金额:
$ 141.89万 - 项目类别:
Standard Grant
PFI: AIR-TT: Prototype Scale-up for Traumatic Pelvic and Abdominal Injury Decision Support System (DSS)
PFI:AIR-TT:创伤性骨盆和腹部损伤决策支持系统 (DSS) 的原型放大
- 批准号:
1500124 - 财政年份:2015
- 资助金额:
$ 141.89万 - 项目类别:
Standard Grant
III-CXT: Information Integration and Processing for Computer-Aided Trauma Decision Making
III-CXT:计算机辅助创伤决策的信息集成和处理
- 批准号:
0758410 - 财政年份:2007
- 资助金额:
$ 141.89万 - 项目类别:
Continuing Grant
III-CXT: Information Integration and Processing for Computer-Aided Trauma Decision Making
III-CXT:计算机辅助创伤决策的信息集成和处理
- 批准号:
0713419 - 财政年份:2007
- 资助金额:
$ 141.89万 - 项目类别:
Continuing Grant
相似海外基金
Optimization Theories, Algorithms, and Interfeces for General Tensor Decompositions
一般张量分解的优化理论、算法和接口
- 批准号:
23H03419 - 财政年份:2023
- 资助金额:
$ 141.89万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Improving chemical exposome target prediction by application of Coupled Matrix/Tensor-Matrix/Tensor Completion algorithms
通过应用耦合矩阵/张量矩阵/张量完成算法改进化学暴露组目标预测
- 批准号:
10734136 - 财政年份:2023
- 资助金额:
$ 141.89万 - 项目类别:
Algorithms and lower bounds for monotone dualization and tensor decomposition of constraint satisfaction hypergraphs
约束满足超图的单调对偶化和张量分解的算法和下界
- 批准号:
576241-2022 - 财政年份:2022
- 资助金额:
$ 141.89万 - 项目类别:
Alliance Grants
Tensor decomposition sampling algorithms for Bayesian inverse problems
贝叶斯逆问题的张量分解采样算法
- 批准号:
EP/T031255/1 - 财政年份:2021
- 资助金额:
$ 141.89万 - 项目类别:
Research Grant
Tensor Network Representation for Machine Learning: Theoretical Study and Algorithms Development
机器学习的张量网络表示:理论研究和算法开发
- 批准号:
20H04249 - 财政年份:2020
- 资助金额:
$ 141.89万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Communication-Avoiding Tensor Decomposition Algorithms
职业:避免通信的张量分解算法
- 批准号:
1942892 - 财政年份:2020
- 资助金额:
$ 141.89万 - 项目类别:
Continuing Grant
CAREER: High-order Tensor Analysis for Groupwise Correspondence: Theory, Algorithms, and Applications
职业:分组对应的高阶张量分析:理论、算法和应用
- 批准号:
2002434 - 财政年份:2019
- 资助金额:
$ 141.89万 - 项目类别:
Standard Grant
Study on improving algorithms for tensor decomposition based on the HPC viewpoint
基于HPC观点的张量分解改进算法研究
- 批准号:
18K18058 - 财政年份:2018
- 资助金额:
$ 141.89万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Tensor-product algorithms for quantum control problems
量子控制问题的张量积算法
- 批准号:
EP/P033954/1 - 财政年份:2018
- 资助金额:
$ 141.89万 - 项目类别:
Research Grant
The Development of New Tensor Decomposition Algorithms to Reveal the Connectivity of Cognitive Learning using EEG
开发新的张量分解算法以揭示脑电图认知学习的连通性
- 批准号:
1941577 - 财政年份:2017
- 资助金额:
$ 141.89万 - 项目类别:
Studentship