SCH: INT: Data-In-Motion Prediction and Assessment of Acute Respiratory Distress Syndrome

SCH:INT:急性呼吸窘迫综合征的动态数据预测和评估

基本信息

项目摘要

The goal of this project is to develop new computational approaches for synthesizing streams of real-time electronic health data for health monitoring and early disease detection. The team will utilize these technologies to address the problem of monitoring patients with lung disease to identify Acute Respiratory Distress Syndrome (ARDS). ARDS is an ideal problem, because it is frequently missed by clinicians with wide-ranging consequences to patients. The project will develop two emerging concepts in machine learning, learning with privileged information and uncertainty, both of which have relevance in healthcare. It will also develop new approaches for integrating different data types, including waveforms (e.g. electrocardiograms), images (e.g. chest x-rays), and numeric data (e.g. laboratory results) to more effectively assist clinicians in medical diagnosis. The project will also establish a multidisciplinary learning platform for computer-assisted health decision support systems to prepare students, postdocs, and early career clinical scientists in precision medicine using highly effective mathematical tools. It will also include participation of groups underrepresented in STEM through recruiting new students, integrating the research training in a highly diverse laboratory, and exploring multidisciplinary, research applied to real-world problems in biomedical science and engineering.This project proposes to extend machine learning techniques to a) incorporate privileged information in algorithm training (data routinely available in retrospective databases but not live clinical environments) and b) to account of uncertainty in training labels (because even medical experts have uncertainty in medical diagnosis). These approaches will lead to more accurate and efficient algorithms for the detection of medical conditions where diagnostic uncertainty is common. The project will develop effective signal processing techniques to identify perturbations associated with respiratory insufficiency and ARDS development in time series data. The project will also develop image processing techniques that extract clinically relevant features from digital chest radiographs of the lungs that could improve the accuracy of real-time clinical diagnosis in many respiratory that are frequently difficulty to distinguish among. Finally, this project will integrate these novel methodologies to develop a clinical decision support system.
该项目的目标是开发新的计算方法,用于合成用于健康监测和早期疾病检测的实时电子健康数据流。该团队将利用这些技术来解决监测肺部疾病患者以识别急性呼吸窘迫综合征(ARDS)的问题。ARDS是一个理想的问题,因为它经常被临床医生错过,对患者造成广泛的后果。该项目将开发机器学习中的两个新兴概念,即利用特权信息和不确定性进行学习,这两个概念都与医疗保健相关。它还将开发整合不同数据类型的新方法,包括波形(例如心电图),图像(例如胸部X光)和数字数据(例如实验室结果),以更有效地帮助临床医生进行医疗诊断。该项目还将为计算机辅助健康决策支持系统建立一个多学科学习平台,为学生,博士后和早期职业临床科学家使用高效的数学工具进行精准医学做好准备。它还将包括通过招募新生,在高度多样化的实验室中整合研究培训,以及探索多学科,应用于生物医学科学和工程中现实世界问题的研究。该项目提出将机器学习技术扩展到a)将特权信息纳入算法训练(数据在回顾性数据库中常规可用,但在现场临床环境中不可用)和B)考虑训练标签中的不确定性(因为即使是医学专家在医学诊断中也具有不确定性)。这些方法将导致更准确和有效的算法,用于检测诊断不确定性常见的医疗状况。该项目将开发有效的信号处理技术,以识别时间序列数据中与呼吸功能不全和ARDS发展相关的扰动。该项目还将开发图像处理技术,从肺部的数字胸片中提取临床相关特征,从而提高许多呼吸系统疾病的实时临床诊断准确性,这些疾病通常难以区分。最后,本计画将整合这些新的方法,以发展一个临床决策支援系统。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Signal quality measure for pulsatile physiological signals using morphological features: Applications in reliability measure for pulse oximetry
使用形态特征测量脉动生理信号的信号质量:在脉搏血氧饱和度可靠性测量中的应用
  • DOI:
    10.1016/j.imu.2019.100222
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sabeti, Elyas;Reamaroon, Narathip;Mathis, Michael;Gryak, Jonathan;Sjoding, Michael;Najarian, Kayvan
  • 通讯作者:
    Najarian, Kayvan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kayvan Najarian其他文献

Self-Reported Sleep Quality and Same-Day Ratings of Health-Related Quality of Life in Individuals With SCI
  • DOI:
    10.1016/j.apmr.2019.08.064
  • 发表时间:
    2019-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Noelle Carlozzi;Nicholas Boileau;Ivan Molton;Dawn Ehde;Kayvan Najarian;Jennifer Miner;Anna Kratz
  • 通讯作者:
    Anna Kratz
Identification of digital twins to guide interpretable AI for diagnosis and prognosis in heart failure
识别数字孪生以指导心力衰竭诊断和预后的可解释人工智能
  • DOI:
    10.1038/s41746-025-01501-9
  • 发表时间:
    2025-02-18
  • 期刊:
  • 影响因子:
    15.100
  • 作者:
    Feng Gu;Andrew J. Meyer;Filip Ježek;Shuangdi Zhang;Tonimarie Catalan;Alexandria Miller;Noah A. Schenk;Victoria E. Sturgess;Domingo Uceda;Rui Li;Emily Wittrup;Xinwei Hua;Brian E. Carlson;Yi-Da Tang;Farhan Raza;Kayvan Najarian;Scott L. Hummel;Daniel A. Beard
  • 通讯作者:
    Daniel A. Beard
796: COMPUTER VISION MEASUREMENT OF DISEASE SEVERITY DISTRIBUTION OUTPERFORMS TRADITIONAL ENDOSCOPIC SCORING FOR DETECTING THERAPEUTIC RESPONSE IN A CLINICAL TRIAL OF USTEKINUMAB FOR ULCERATIVE COLITIS
  • DOI:
    10.1016/s0016-5085(22)60462-1
  • 发表时间:
    2022-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ryan Stidham;Heming Yao;Reza Soroushmehr;Jonathan Gryak;Tadd Hiatt;Michael D. Rice;Shrinivas Bishu;Louis R. Ghanem;Aleksandar Stojmirovic;Jan Wehkamp;Xiaoying Wu;Najat Khan;Kayvan Najarian
  • 通讯作者:
    Kayvan Najarian
Mo1736 PREDICTING REMISSION EARLY IN ULCERATIVE COLITIS CLINICAL TRIALS USING COMPUTER VISION ANALYSIS OF ENDOSCOPIC VIDEO
  • DOI:
    10.1016/s0016-5085(23)03046-9
  • 发表时间:
    2023-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ryan Stidham;Cristian Minoccheri;Sophia Tesic;Lingrui Cai;Shuyang Cheng;Flora Rajaei;Tadd Hiatt;Michael D. Rice;Shrinivas Bishu;Jan Wehkamp;Najat Khan;Tommaso Mansi;Xiaoying Wu;Weiwei Schultz;Aleksandar Stojmirovic;Louis R. Ghanem;Kayvan Najarian
  • 通讯作者:
    Kayvan Najarian
353 AUTOMATED DIGITAL ULCER QUANTITATION IN COLONOSCOPY IS BETTER ASSOCIATED WITH CLINICAL REMISSION THAN CONVENTIONAL ENDOSCOPIC SCORING IN CROHN'S DISEASE
  • DOI:
    10.1016/s0016-5085(23)01106-x
  • 发表时间:
    2023-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ryan Stidham;Shuyang Cheng;Lingrui Cai;Flora Rajaei;Cristian Minoccheri;Tadd Hiatt;Michael D. Rice;Shrinivas Bishu;Jan Wehkamp;Weiwei Schultz;Xiaoying Wu;Najat Khan;Tommaso Mansi;Aleksandar Stojmirovic;Louis R. Ghanem;Kayvan Najarian
  • 通讯作者:
    Kayvan Najarian

Kayvan Najarian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kayvan Najarian', 18)}}的其他基金

IUCRC Phase I University of Michigan Ann Arbor: Center for Data-Driven Drug Development and Treatment Assessment (DATA)
IUCRC 第一阶段密歇根大学安娜堡分校:数据驱动药物开发和治疗评估中心 (DATA)
  • 批准号:
    2209546
  • 财政年份:
    2022
  • 资助金额:
    $ 129.94万
  • 项目类别:
    Continuing Grant
IUCRC Planning Grant University of Michigan – Ann Arbor (UM): Center for Secured Computation for Drug Discovery and Repurposing (SCDDR)
IUCRC 规划拨款密歇根大学 – 安娜堡 (UM):药物发现和再利用安全计算中心 (SCDDR)
  • 批准号:
    2051997
  • 财政年份:
    2021
  • 资助金额:
    $ 129.94万
  • 项目类别:
    Standard Grant
SCH: INT: Improving Care for Heart Failure Patients Using Tropical Geometry and Soft Computing
SCH:INT:利用热带几何和软计算改善心力衰竭患者的护理
  • 批准号:
    2014003
  • 财政年份:
    2020
  • 资助金额:
    $ 129.94万
  • 项目类别:
    Standard Grant
BIGDATA: F: Algorithms for Tensor-Based Modeling of Large Scale Structured Data
BIGDATA:F:大规模结构化数据基于张量的建模算法
  • 批准号:
    1837985
  • 财政年份:
    2018
  • 资助金额:
    $ 129.94万
  • 项目类别:
    Standard Grant
PFI: AIR-TT: Prototype Scale-up for Traumatic Pelvic and Abdominal Injury Decision Support System (DSS)
PFI:AIR-TT:创伤性骨盆和腹部损伤决策支持系统 (DSS) 的原型放大
  • 批准号:
    1500124
  • 财政年份:
    2015
  • 资助金额:
    $ 129.94万
  • 项目类别:
    Standard Grant
III-CXT: Information Integration and Processing for Computer-Aided Trauma Decision Making
III-CXT:计算机辅助创伤决策的信息集成和处理
  • 批准号:
    0758410
  • 财政年份:
    2007
  • 资助金额:
    $ 129.94万
  • 项目类别:
    Continuing Grant
III-CXT: Information Integration and Processing for Computer-Aided Trauma Decision Making
III-CXT:计算机辅助创伤决策的信息集成和处理
  • 批准号:
    0713419
  • 财政年份:
    2007
  • 资助金额:
    $ 129.94万
  • 项目类别:
    Continuing Grant

相似国自然基金

内源性逆转录病毒MER65-int调控人类胎 盘发育与子宫内膜重塑的功能研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
隐秘重组信号序列INT-RSS在T细胞受体基因Tcra重排中的功能和机制研究
  • 批准号:
    32370939
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
HPV16 E7 通过 Int1 蛋白调控 Wnt 信号通路调节肿瘤局部树突状细胞活性
  • 批准号:
    LQ22H160033
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
选择性PPARγ激动剂INT131调控适应性产热和AD-MSCs分化成棕色样脂肪细胞的机制研究
  • 批准号:
    81903680
  • 批准年份:
    2019
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
INT复合物调节U snRNA 3'加工的结构基础
  • 批准号:
    31800624
  • 批准年份:
    2018
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
沉默Int6基因的骨髓间充质干细胞复合生物支架构建血管化腹股沟疝补片及其促补片血管化机制
  • 批准号:
    81371698
  • 批准年份:
    2013
  • 资助金额:
    70.0 万元
  • 项目类别:
    面上项目
HIF/Int6调控迟发型EPC体外增殖的机制及其治疗重度子痫前期的可行性
  • 批准号:
    81100439
  • 批准年份:
    2011
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

SCH:INT: SCH: INT: A gamified mobile system for real-time mental health data modeling and personalized autism care across sociocultural settings
SCH:INT: SCH:INT:一个游戏化的移动系统,用于跨社会文化环境的实时心理健康数据建模和个性化自闭症护理
  • 批准号:
    2014232
  • 财政年份:
    2020
  • 资助金额:
    $ 129.94万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: A Data-Driven Approach for Enhancing Wearable Device Performance - A Study on Early Detection of Asthma Exacerbation
SCH:INT:协作研究:增强可穿戴设备性能的数据驱动方法 - 哮喘恶化早期检测的研究
  • 批准号:
    1915599
  • 财政年份:
    2019
  • 资助金额:
    $ 129.94万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: A Data-Driven Approach to Enhancing Wearable Device Performance - An Early Asthma Exacerbation Detection Study
SCH:INT:协作研究:增强可穿戴设备性能的数据驱动方法 - 早期哮喘恶化检测研究
  • 批准号:
    1915169
  • 财政年份:
    2019
  • 资助金额:
    $ 129.94万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: Multimodal Signal Analysis and Data Fusion for Post-traumatic Epilepsy
SCH:INT:合作研究:创伤后癫痫的多模态信号分析和数据融合
  • 批准号:
    10093160
  • 财政年份:
    2019
  • 资助金额:
    $ 129.94万
  • 项目类别:
SCH: INT: Collaborative Research: Multimodal Signal Analysis and Data Fusion for Post-traumatic Epilepsy
SCH:INT:合作研究:创伤后癫痫的多模态信号分析和数据融合
  • 批准号:
    9756832
  • 财政年份:
    2019
  • 资助金额:
    $ 129.94万
  • 项目类别:
SCH: INT: Collaborative Research: Multimodal Signal Analysis and Data Fusion for Post-traumatic Epilepsy
SCH:INT:合作研究:创伤后癫痫的多模态信号分析和数据融合
  • 批准号:
    9921505
  • 财政年份:
    2019
  • 资助金额:
    $ 129.94万
  • 项目类别:
SCH: INT: Collaborative Research: Crowd in Action: Human-Centric Privacy-Preserving Data Analytics for Environmental Public Health
SCH:INT:协作研究:人群在行动:以人为本的隐私保护环境公共卫生数据分析
  • 批准号:
    1949640
  • 财政年份:
    2019
  • 资助金额:
    $ 129.94万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: Data-driven Stratification and Prognosis for Traumatic Brain Injury
SCH:INT:协作研究:数据驱动的脑外伤分层和预后
  • 批准号:
    1838745
  • 财政年份:
    2018
  • 资助金额:
    $ 129.94万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: Data-driven Stratification and Prognosis for Traumatic Brain Injury
SCH:INT:协作研究:数据驱动的脑外伤分层和预后
  • 批准号:
    1838730
  • 财政年份:
    2018
  • 资助金额:
    $ 129.94万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: Crowd in Action: Human-Centric Privacy-Preserving Data Analytics for Environmental Public Health
SCH:INT:协作研究:人群在行动:以人为本的隐私保护环境公共卫生数据分析
  • 批准号:
    1722731
  • 财政年份:
    2017
  • 资助金额:
    $ 129.94万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了