SCH: INT: Improving Care for Heart Failure Patients Using Tropical Geometry and Soft Computing

SCH:INT:利用热带几何和软计算改善心力衰竭患者的护理

基本信息

项目摘要

The project will develop novel computational approaches for leveraging domain expertise and electronic health data for the production of clinical decision support systems with transparent recommendations. These techniques will be used to identify the optimal timing of advanced therapies for patients with heart failure (HF), such as heart transplantation and durable mechanical circulatory support (MCS) devices. While such therapies have the ability to improve patient survival and quality of life, clinicians’ abilities to identify appropriate candidates and deliver optimally timed therapies remains limited. This project will address this problem by creating a novel machine learning paradigm, using mathematical formulations based on tropical geometry, that incorporates approximate domain knowledge directly into model training, which can then be optimized using a limited data set. Optimized rules extracted from the trained model are interpretable by clinicians and can be used to guide treatment decisions. Such tools offer the promise of improving patients’ lives while reducing future costs. The project will also establish an interdisciplinary learning platform for computer-assisted decision support systems that will prepare students, postdocs, and early career clinical scientists to apply data science techniques to medical decision support. The project will also include groups underrepresented in Science, Technology, Engineering, and Mathematics (STEM) by recruiting new students and integrating the research training into a highly diverse laboratory.The project will apply the emerging field of tropical geometry to soft computing methods. This approach will avoid the disadvantages of conventional soft computing paradigms such as fuzzy logic by: a) reducing the need for a large number of training examples, b) allowing smooth and fast optimization during model training, and c) enabling a systematic reduction in the size of the parameter space, thereby reducing the likelihood of overfitting the data. Approximate rules will be collected from a panel of cardiologists to determine candidacy for advanced therapies. Using the planned method, these rules will be incorporated into a model to predict the progression of HF and identify patients who are eligible for and most likely to benefit from heart transplantation or durable MCS devices. Optimized rules will be extracted from the trained model and verified by a panel of cardiologists for correctness and clinical utility. Moreover, the proposed machine learning paradigm will be able to generate novel and interpretable clinical rules that add to our understanding of how best to manage patients with advanced HF.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将开发新的计算方法,利用领域专业知识和电子健康数据来生产具有透明建议的临床决策支持系统。这些技术将用于确定对心力衰竭(HF)患者进行先进治疗的最佳时机,例如心脏移植和耐用的机械循环支持(MCS)设备。虽然这种疗法有能力改善患者的生存和生活质量,但临床医生确定合适的候选人和提供最佳时机治疗的能力仍然有限。该项目将通过创建一种新的机器学习范例来解决这一问题,该范例使用基于热带几何的数学公式,将近似领域知识直接纳入模型训练,然后可以使用有限的数据集进行优化。从训练的模型中提取的优化规则可由临床医生解释,并可用于指导治疗决策。这些工具有望改善患者的生活,同时降低未来的成本。该项目还将为计算机辅助决策支持系统建立一个跨学科的学习平台,使学生、博士后和职业生涯早期的临床科学家准备将数据科学技术应用于医疗决策支持。该项目还将通过招收新学生并将研究培训整合到一个高度多样化的实验室来包括科学、技术、工程和数学(STEM)中代表性不足的群体。该项目将把新兴的热带几何领域应用于软计算方法。该方法将通过以下方式避免诸如模糊逻辑的传统软计算范例的缺点:a)减少对大量训练样本的需要,b)允许在模型训练期间平滑且快速地进行优化,以及c)使得能够系统地减小参数空间的大小,从而降低数据过度拟合的可能性。将从心脏病专家小组收集大致规则,以确定高级治疗的候选资格。使用计划中的方法,这些规则将被合并到一个模型中,以预测心力衰竭的进展,并确定哪些患者有资格并最有可能受益于心脏移植或耐用的MCS设备。优化的规则将从训练后的模型中提取出来,并由心脏病专家小组验证其正确性和临床实用性。此外,拟议的机器学习范例将能够生成新颖和可解释的临床规则,这些规则增加了我们对如何最好地管理晚期HF患者的理解。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Novel Tropical Geometry-Based Interpretable Machine Learning Method: Pilot Application to Delivery of Advanced Heart Failure Therapies
一种基于热带几何的新型可解释机器学习方法:在先进心力衰竭治疗中的试点应用
  • DOI:
    10.1109/jbhi.2022.3211765
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Yao, Heming;Derksen, Harm;Golbus, Jessica R.;Zhang, Justin;Aaronson, Keith D.;Gryak, Jonathan;Najarian, Kayvan
  • 通讯作者:
    Najarian, Kayvan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kayvan Najarian其他文献

Self-Reported Sleep Quality and Same-Day Ratings of Health-Related Quality of Life in Individuals With SCI
  • DOI:
    10.1016/j.apmr.2019.08.064
  • 发表时间:
    2019-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Noelle Carlozzi;Nicholas Boileau;Ivan Molton;Dawn Ehde;Kayvan Najarian;Jennifer Miner;Anna Kratz
  • 通讯作者:
    Anna Kratz
Identification of digital twins to guide interpretable AI for diagnosis and prognosis in heart failure
识别数字孪生以指导心力衰竭诊断和预后的可解释人工智能
  • DOI:
    10.1038/s41746-025-01501-9
  • 发表时间:
    2025-02-18
  • 期刊:
  • 影响因子:
    15.100
  • 作者:
    Feng Gu;Andrew J. Meyer;Filip Ježek;Shuangdi Zhang;Tonimarie Catalan;Alexandria Miller;Noah A. Schenk;Victoria E. Sturgess;Domingo Uceda;Rui Li;Emily Wittrup;Xinwei Hua;Brian E. Carlson;Yi-Da Tang;Farhan Raza;Kayvan Najarian;Scott L. Hummel;Daniel A. Beard
  • 通讯作者:
    Daniel A. Beard
796: COMPUTER VISION MEASUREMENT OF DISEASE SEVERITY DISTRIBUTION OUTPERFORMS TRADITIONAL ENDOSCOPIC SCORING FOR DETECTING THERAPEUTIC RESPONSE IN A CLINICAL TRIAL OF USTEKINUMAB FOR ULCERATIVE COLITIS
  • DOI:
    10.1016/s0016-5085(22)60462-1
  • 发表时间:
    2022-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ryan Stidham;Heming Yao;Reza Soroushmehr;Jonathan Gryak;Tadd Hiatt;Michael D. Rice;Shrinivas Bishu;Louis R. Ghanem;Aleksandar Stojmirovic;Jan Wehkamp;Xiaoying Wu;Najat Khan;Kayvan Najarian
  • 通讯作者:
    Kayvan Najarian
353 AUTOMATED DIGITAL ULCER QUANTITATION IN COLONOSCOPY IS BETTER ASSOCIATED WITH CLINICAL REMISSION THAN CONVENTIONAL ENDOSCOPIC SCORING IN CROHN'S DISEASE
  • DOI:
    10.1016/s0016-5085(23)01106-x
  • 发表时间:
    2023-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ryan Stidham;Shuyang Cheng;Lingrui Cai;Flora Rajaei;Cristian Minoccheri;Tadd Hiatt;Michael D. Rice;Shrinivas Bishu;Jan Wehkamp;Weiwei Schultz;Xiaoying Wu;Najat Khan;Tommaso Mansi;Aleksandar Stojmirovic;Louis R. Ghanem;Kayvan Najarian
  • 通讯作者:
    Kayvan Najarian
Mo1736 PREDICTING REMISSION EARLY IN ULCERATIVE COLITIS CLINICAL TRIALS USING COMPUTER VISION ANALYSIS OF ENDOSCOPIC VIDEO
  • DOI:
    10.1016/s0016-5085(23)03046-9
  • 发表时间:
    2023-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ryan Stidham;Cristian Minoccheri;Sophia Tesic;Lingrui Cai;Shuyang Cheng;Flora Rajaei;Tadd Hiatt;Michael D. Rice;Shrinivas Bishu;Jan Wehkamp;Najat Khan;Tommaso Mansi;Xiaoying Wu;Weiwei Schultz;Aleksandar Stojmirovic;Louis R. Ghanem;Kayvan Najarian
  • 通讯作者:
    Kayvan Najarian

Kayvan Najarian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kayvan Najarian', 18)}}的其他基金

IUCRC Phase I University of Michigan Ann Arbor: Center for Data-Driven Drug Development and Treatment Assessment (DATA)
IUCRC 第一阶段密歇根大学安娜堡分校:数据驱动药物开发和治疗评估中心 (DATA)
  • 批准号:
    2209546
  • 财政年份:
    2022
  • 资助金额:
    $ 99.64万
  • 项目类别:
    Continuing Grant
IUCRC Planning Grant University of Michigan – Ann Arbor (UM): Center for Secured Computation for Drug Discovery and Repurposing (SCDDR)
IUCRC 规划拨款密歇根大学 – 安娜堡 (UM):药物发现和再利用安全计算中心 (SCDDR)
  • 批准号:
    2051997
  • 财政年份:
    2021
  • 资助金额:
    $ 99.64万
  • 项目类别:
    Standard Grant
BIGDATA: F: Algorithms for Tensor-Based Modeling of Large Scale Structured Data
BIGDATA:F:大规模结构化数据基于张量的建模算法
  • 批准号:
    1837985
  • 财政年份:
    2018
  • 资助金额:
    $ 99.64万
  • 项目类别:
    Standard Grant
SCH: INT: Data-In-Motion Prediction and Assessment of Acute Respiratory Distress Syndrome
SCH:INT:急性呼吸窘迫综合征的动态数据预测和评估
  • 批准号:
    1722801
  • 财政年份:
    2017
  • 资助金额:
    $ 99.64万
  • 项目类别:
    Standard Grant
PFI: AIR-TT: Prototype Scale-up for Traumatic Pelvic and Abdominal Injury Decision Support System (DSS)
PFI:AIR-TT:创伤性骨盆和腹部损伤决策支持系统 (DSS) 的原型放大
  • 批准号:
    1500124
  • 财政年份:
    2015
  • 资助金额:
    $ 99.64万
  • 项目类别:
    Standard Grant
III-CXT: Information Integration and Processing for Computer-Aided Trauma Decision Making
III-CXT:计算机辅助创伤决策的信息集成和处理
  • 批准号:
    0758410
  • 财政年份:
    2007
  • 资助金额:
    $ 99.64万
  • 项目类别:
    Continuing Grant
III-CXT: Information Integration and Processing for Computer-Aided Trauma Decision Making
III-CXT:计算机辅助创伤决策的信息集成和处理
  • 批准号:
    0713419
  • 财政年份:
    2007
  • 资助金额:
    $ 99.64万
  • 项目类别:
    Continuing Grant

相似国自然基金

内源性逆转录病毒MER65-int调控人类胎 盘发育与子宫内膜重塑的功能研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
隐秘重组信号序列INT-RSS在T细胞受体基因Tcra重排中的功能和机制研究
  • 批准号:
    32370939
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
HPV16 E7 通过 Int1 蛋白调控 Wnt 信号通路调节肿瘤局部树突状细胞活性
  • 批准号:
    LQ22H160033
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
选择性PPARγ激动剂INT131调控适应性产热和AD-MSCs分化成棕色样脂肪细胞的机制研究
  • 批准号:
    81903680
  • 批准年份:
    2019
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
INT复合物调节U snRNA 3'加工的结构基础
  • 批准号:
    31800624
  • 批准年份:
    2018
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
沉默Int6基因的骨髓间充质干细胞复合生物支架构建血管化腹股沟疝补片及其促补片血管化机制
  • 批准号:
    81371698
  • 批准年份:
    2013
  • 资助金额:
    70.0 万元
  • 项目类别:
    面上项目
HIF/Int6调控迟发型EPC体外增殖的机制及其治疗重度子痫前期的可行性
  • 批准号:
    81100439
  • 批准年份:
    2011
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

INT-ACT: Intangible Cultural Heritage, Bridging The Past, Present And Future
INT-ACT:非物质文化遗产,连接过去、现在和未来
  • 批准号:
    10102226
  • 财政年份:
    2024
  • 资助金额:
    $ 99.64万
  • 项目类别:
    EU-Funded
SCH: INT: New Machine Learning Framework to Conduct Anesthesia Risk Stratification and Decision Support for Precision Health
SCH:INT:用于进行麻醉风险分层和精准健康决策支持的新机器学习框架
  • 批准号:
    2347604
  • 财政年份:
    2023
  • 资助金额:
    $ 99.64万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: An Intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
  • 批准号:
    2343183
  • 财政年份:
    2023
  • 资助金额:
    $ 99.64万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: DeepSense: Interpretable Deep Learning for Zero-effort Phenotype Sensing and Its Application to Sleep Medicine
SCH:INT:合作研究:DeepSense:零努力表型感知的可解释深度学习及其在睡眠医学中的应用
  • 批准号:
    2313481
  • 财政年份:
    2022
  • 资助金额:
    $ 99.64万
  • 项目类别:
    Standard Grant
Quantifying the inboard transfer of deformation int he Northern Canadian Cordillera
量化加拿大北部科迪勒拉山脉向内变形传递
  • 批准号:
    517959-2018
  • 财政年份:
    2022
  • 资助金额:
    $ 99.64万
  • 项目类别:
    Discovery Grants Program - Northern Research Supplement
SCH: INT: Context-Aware Micro-Interventions for Social Anxiety
SCH:INT:针对社交焦虑的情境感知微干预
  • 批准号:
    10700105
  • 财政年份:
    2022
  • 资助金额:
    $ 99.64万
  • 项目类别:
SCH: INT: Context-Aware Micro-Interventions for Social Anxiety
SCH:INT:针对社交焦虑的情境感知微干预
  • 批准号:
    10601189
  • 财政年份:
    2022
  • 资助金额:
    $ 99.64万
  • 项目类别:
Quantifying the inboard transfer of deformation int he Northern Canadian Cordillera
量化加拿大北部科迪勒拉山脉向内变形传递
  • 批准号:
    517959-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 99.64万
  • 项目类别:
    Discovery Grants Program - Northern Research Supplement
SCH: INT: Collaborative Research: Context-Adaptive Multimodal Informatics for Psychiatric Discharge Planning
SCH:INT:合作研究:用于精神病出院计划的上下文自适应多模态信息学
  • 批准号:
    10573225
  • 财政年份:
    2021
  • 资助金额:
    $ 99.64万
  • 项目类别:
NRI: INT: Self-Assembly of Modular Robots Constructed using DNA: Modeling and Manufacturing Nanostructures with Graph Neural Networks and DNA Origami
NRI:INT:使用 DNA 构建的模块化机器人的自组装:使用图神经网络和 DNA 折纸建模和制造纳米结构
  • 批准号:
    2132886
  • 财政年份:
    2021
  • 资助金额:
    $ 99.64万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了