PFI: AIR-TT: Prototype Scale-up for Traumatic Pelvic and Abdominal Injury Decision Support System (DSS)
PFI:AIR-TT:创伤性骨盆和腹部损伤决策支持系统 (DSS) 的原型放大
基本信息
- 批准号:1500124
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This PFI:AIR Technology Translation project focuses on translating and accelerating commercialization of a patented Traumatic Pelvic and Abdominal Injury Decision Support System (DSS) technology. This will enable physicians to quickly and accurately extract complex patient data from all relevant biomedical images, (e.g., CT scans with hundreds of image slices) trauma scores, diagnoses, treatments, demographics, and injury specifics for each patient?while integrating and analyzing the information to generate prediction, warning, and treatment recommendations at every stage of patient care. This project is important not only to help decrease medical complications and increase survival, but also to optimize resource utilization- a key to reducing the approximately $60B medical cost each year for treating complications in pelvic and abdominal trauma cases. The Traumatic Pelvic and Abdominal Injury DSS technology has the following unique capabilities which provide competitive advantages when compared to the existing state of the art for DSS tools: 1) it segments and assesses damage to major abdominal organs; 2) it provides recommendations and predictions for several specific, complex clinical decisions; 3) it is fully automated and does not require an expert?s supervision in analyzing patient data- providing an easier-to-use software interface and potentially providing higher accuracy in pertinent recommendations for trauma patient care. If the algorithms and software are successfully validated through this project, a licensing pathway has been identified to commercialize the DSS software.Clinical decision making shows its true complexity when one is trying to quickly and accurately integrate complex types of patient data in an emergency setting. This project addresses several technology gaps as it translates from research discovery toward commercial application. Existing "semi-automated" systems use only a portion of patient data and do not analyze detailed information contained in digital images to create recommendations; conversely, current image processing technologies designed mainly to assist in analysis of CTs (or other images) are not optimized to address the needs of trauma and/or DSS tools. This project will refine and scale up the prototype, validate its clinical use, and accelerate its commercialization to assist clinicians in traumatic pelvic and abdominal injury cases. Key technical objectives are to: 1) expand the organ segmentation software module (now covering only the spleen) to include the liver, kidneys, and pancreas; 2) enhance the hemorrhage detection algorithms to find bleeding close to bones; 3) further validate and improve the system using a larger and more comprehensive dataset; and 4) rewrite the graphical user interface to match requirements for the prototype and validate its effectiveness and ease of use by clinicians. Key computational methods generated by this project include automated image processing algorithms and machine learning methods to: 1) assess a CT scan for bone fracture(s) and hemorrhage and measure their sizes; 2) segment more major organs, identify damage, and quantitatively assess level of injury; and 3) predict outcomes (survival, number of ICU days, home vs. rehab, etc.) and form recommendations for care givers at each step of the treatment. The graduate student involved in this project will gain experience in innovation and technology translation towards commercialization through development of the DDS tool, testing and validating the algorithms, and working closing with the project team, clinicians, business developers, tech transfer professionals, and a potential licensee to commercialize the technology as a viable product.
这个PFI:AIR技术翻译项目的重点是翻译和加速专利的创伤性骨盆和腹部损伤决策支持系统(DSS)技术的商业化。这将使医生能够快速准确地从所有相关的生物医学图像中提取复杂的患者数据,(例如,CT扫描与数百个图像切片)创伤评分,诊断,治疗,人口统计学,和每个病人的伤害细节?同时整合和分析信息以在患者护理的每个阶段产生预测、警告和治疗建议。该项目不仅有助于减少医疗并发症和提高生存率,而且还可以优化资源利用-这是减少每年用于治疗骨盆和腹部创伤并发症的约600亿美元医疗成本的关键。创伤性骨盆和腹部损伤DSS技术具有以下独特的功能,与DSS工具的现有最新技术相比,这些功能具有竞争优势:1)它分割并评估主要腹部器官的损伤; 2)它为几个特定的复杂临床决策提供建议和预测; 3)它是完全自动化的,不需要专家?在分析患者数据时,提供了一个用户使用的软件界面,并可能在创伤患者护理的相关建议中提供更高的准确性。如果算法和软件通过该项目成功验证,则已确定将DSS软件商业化的许可途径。临床决策在紧急情况下试图快速准确地整合复杂类型的患者数据时显示出其真正的复杂性。该项目解决了从研究发现到商业应用的几个技术差距。现有的“半自动化”系统仅使用患者数据的一部分,并且不分析数字图像中包含的详细信息以创建建议;相反,主要设计用于辅助CT(或其他图像)分析的当前图像处理技术未被优化以解决创伤和/或DSS工具的需求。该项目将完善和扩大原型,验证其临床用途,并加速其商业化,以帮助临床医生治疗创伤性骨盆和腹部损伤病例。主要技术目标是:1)扩展器官分割软件模块2)增强出血检测算法以发现靠近骨骼的出血; 3)使用更大和更全面的数据集进一步验证和改进系统;以及4)重写图形用户界面以匹配原型的需求并验证其有效性和临床医生使用的容易性。该项目生成的关键计算方法包括自动图像处理算法和机器学习方法,用于:1)评估骨折和出血的CT扫描并测量其大小; 2)分割更多主要器官,识别损伤并定量评估损伤程度; 3)预测结果(生存率,ICU天数,家庭与康复等)。并在治疗的每一步为护理人员提供建议。参与该项目的研究生将通过开发DDS工具,测试和验证算法,并与项目团队,临床医生,业务开发人员,技术转让专业人员和潜在的被许可人合作,将技术商业化为可行的产品,从而获得创新和技术转化为商业化的经验。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fully Automated Spleen Localization And Segmentation Using Machine Learning And 3D Active Contours
- DOI:10.1109/embc.2018.8512182
- 发表时间:2018-07
- 期刊:
- 影响因子:0
- 作者:Alexander Wood;S. Soroushmehr;Negar Farzaneh;D. Fessell;Kevin Ward;Jonathan Gryak;Delaram Kahrobaei-;K. Najarian
- 通讯作者:Alexander Wood;S. Soroushmehr;Negar Farzaneh;D. Fessell;Kevin Ward;Jonathan Gryak;Delaram Kahrobaei-;K. Najarian
Brain Hematoma Segmentation Using Active Learning and an Active Contour Model
- DOI:10.1007/978-3-030-17935-9_35
- 发表时间:2019-05
- 期刊:
- 影响因子:0
- 作者:Heming Yao;C. Williamson;Jonathan Gryak;K. Najarian
- 通讯作者:Heming Yao;C. Williamson;Jonathan Gryak;K. Najarian
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kayvan Najarian其他文献
Self-Reported Sleep Quality and Same-Day Ratings of Health-Related Quality of Life in Individuals With SCI
- DOI:
10.1016/j.apmr.2019.08.064 - 发表时间:
2019-10-01 - 期刊:
- 影响因子:
- 作者:
Noelle Carlozzi;Nicholas Boileau;Ivan Molton;Dawn Ehde;Kayvan Najarian;Jennifer Miner;Anna Kratz - 通讯作者:
Anna Kratz
Identification of digital twins to guide interpretable AI for diagnosis and prognosis in heart failure
识别数字孪生以指导心力衰竭诊断和预后的可解释人工智能
- DOI:
10.1038/s41746-025-01501-9 - 发表时间:
2025-02-18 - 期刊:
- 影响因子:15.100
- 作者:
Feng Gu;Andrew J. Meyer;Filip Ježek;Shuangdi Zhang;Tonimarie Catalan;Alexandria Miller;Noah A. Schenk;Victoria E. Sturgess;Domingo Uceda;Rui Li;Emily Wittrup;Xinwei Hua;Brian E. Carlson;Yi-Da Tang;Farhan Raza;Kayvan Najarian;Scott L. Hummel;Daniel A. Beard - 通讯作者:
Daniel A. Beard
796: COMPUTER VISION MEASUREMENT OF DISEASE SEVERITY DISTRIBUTION OUTPERFORMS TRADITIONAL ENDOSCOPIC SCORING FOR DETECTING THERAPEUTIC RESPONSE IN A CLINICAL TRIAL OF USTEKINUMAB FOR ULCERATIVE COLITIS
- DOI:
10.1016/s0016-5085(22)60462-1 - 发表时间:
2022-05-01 - 期刊:
- 影响因子:
- 作者:
Ryan Stidham;Heming Yao;Reza Soroushmehr;Jonathan Gryak;Tadd Hiatt;Michael D. Rice;Shrinivas Bishu;Louis R. Ghanem;Aleksandar Stojmirovic;Jan Wehkamp;Xiaoying Wu;Najat Khan;Kayvan Najarian - 通讯作者:
Kayvan Najarian
353 AUTOMATED DIGITAL ULCER QUANTITATION IN COLONOSCOPY IS BETTER ASSOCIATED WITH CLINICAL REMISSION THAN CONVENTIONAL ENDOSCOPIC SCORING IN CROHN'S DISEASE
- DOI:
10.1016/s0016-5085(23)01106-x - 发表时间:
2023-05-01 - 期刊:
- 影响因子:
- 作者:
Ryan Stidham;Shuyang Cheng;Lingrui Cai;Flora Rajaei;Cristian Minoccheri;Tadd Hiatt;Michael D. Rice;Shrinivas Bishu;Jan Wehkamp;Weiwei Schultz;Xiaoying Wu;Najat Khan;Tommaso Mansi;Aleksandar Stojmirovic;Louis R. Ghanem;Kayvan Najarian - 通讯作者:
Kayvan Najarian
Mo1736 PREDICTING REMISSION EARLY IN ULCERATIVE COLITIS CLINICAL TRIALS USING COMPUTER VISION ANALYSIS OF ENDOSCOPIC VIDEO
- DOI:
10.1016/s0016-5085(23)03046-9 - 发表时间:
2023-05-01 - 期刊:
- 影响因子:
- 作者:
Ryan Stidham;Cristian Minoccheri;Sophia Tesic;Lingrui Cai;Shuyang Cheng;Flora Rajaei;Tadd Hiatt;Michael D. Rice;Shrinivas Bishu;Jan Wehkamp;Najat Khan;Tommaso Mansi;Xiaoying Wu;Weiwei Schultz;Aleksandar Stojmirovic;Louis R. Ghanem;Kayvan Najarian - 通讯作者:
Kayvan Najarian
Kayvan Najarian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kayvan Najarian', 18)}}的其他基金
IUCRC Phase I University of Michigan Ann Arbor: Center for Data-Driven Drug Development and Treatment Assessment (DATA)
IUCRC 第一阶段密歇根大学安娜堡分校:数据驱动药物开发和治疗评估中心 (DATA)
- 批准号:
2209546 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
IUCRC Planning Grant University of Michigan – Ann Arbor (UM): Center for Secured Computation for Drug Discovery and Repurposing (SCDDR)
IUCRC 规划拨款密歇根大学 – 安娜堡 (UM):药物发现和再利用安全计算中心 (SCDDR)
- 批准号:
2051997 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
SCH: INT: Improving Care for Heart Failure Patients Using Tropical Geometry and Soft Computing
SCH:INT:利用热带几何和软计算改善心力衰竭患者的护理
- 批准号:
2014003 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
BIGDATA: F: Algorithms for Tensor-Based Modeling of Large Scale Structured Data
BIGDATA:F:大规模结构化数据基于张量的建模算法
- 批准号:
1837985 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
SCH: INT: Data-In-Motion Prediction and Assessment of Acute Respiratory Distress Syndrome
SCH:INT:急性呼吸窘迫综合征的动态数据预测和评估
- 批准号:
1722801 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
III-CXT: Information Integration and Processing for Computer-Aided Trauma Decision Making
III-CXT:计算机辅助创伤决策的信息集成和处理
- 批准号:
0758410 - 财政年份:2007
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
III-CXT: Information Integration and Processing for Computer-Aided Trauma Decision Making
III-CXT:计算机辅助创伤决策的信息集成和处理
- 批准号:
0713419 - 财政年份:2007
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
相似国自然基金
湍流和化学交互作用对H2-Air-H2O微混燃烧中NO生成的影响研究
- 批准号:51976048
- 批准年份:2019
- 资助金额:61.0 万元
- 项目类别:面上项目
相似海外基金
PFI-TT: Demonstration of a Liquid Piston Gas Compressor/Expander for Compressed Air Energy Storage and CO2 Sequestration
PFI-TT:用于压缩空气储能和二氧化碳封存的液体活塞气体压缩机/膨胀器的演示
- 批准号:
1827517 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
PFI: AIR-TT: Ultrapure Lignins Recovered from Paper-Mill Black Liquors as Renewable Biopolymers
PFI:AIR-TT:从造纸厂黑液中回收超纯木质素作为可再生生物聚合物
- 批准号:
1701128 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
PFI: AIR-TT: Preflex versus Reflex Control of a Multijoint Robotic Exoskeleton
PFI:AIR-TT:多关节机器人外骨骼的预反射与反射控制
- 批准号:
1701230 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
PFI: AIR-TT: Commercializing a new genre of Intelligent Science Stations for informal and formal learning
PFI:AIR-TT:将新型智能科学站商业化,用于非正式和正式学习
- 批准号:
1701107 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
PFI: AIR-TT: PharmaFlux: Drug Evaluation on a Biomimetic Microfluidic Device
PFI:AIR-TT:PharmaFlux:仿生微流体装置的药物评估
- 批准号:
1701136 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
PFI: AIR-TT: Microwave flow cytometer: monitor yeast cell growth and microbial contamination in fermentation
PFI:AIR-TT:微波流式细胞仪:监测发酵过程中的酵母细胞生长和微生物污染
- 批准号:
1640578 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
PFI: AIR - TT: Vision-based ergonomic risk assessment of working postures
PFI:AIR - TT:基于视觉的工作姿势人体工程学风险评估
- 批准号:
1640633 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
PFI: AIR-TT: Scale-up Synthesis of Nanoparticles for Manufacturing Microelectrodes and Sensing Films of Indoor Air Quality Chemiresistor Sensors
PFI:AIR-TT:用于制造室内空气质量化学电阻传感器的微电极和传感薄膜的纳米颗粒的放大合成
- 批准号:
1640669 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
PFI: AIR - TT: Developing A Bio-based Rejuvenator to Revitalize Asphalt in Scrap Roofing Shingles
PFI:AIR - TT:开发生物基再生剂以再生废屋顶瓦中的沥青
- 批准号:
1640517 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
PFI-AIR-TT: Wearable sleepwear for quantitative prognostication and noninvasive therapy of obstructive sleep apnea
PFI-AIR-TT:可穿戴睡衣,用于阻塞性睡眠呼吸暂停的定量预测和无创治疗
- 批准号:
1543226 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Standard Grant