Increasing the dimensionality of the Luttinger-electron-system Au/Ge(001) by molecular bridges, studied by scanning tunneling spectroscopy

通过扫描隧道光谱研究通过分子桥增加路廷格电子系统 Au/Ge(001) 的维数

基本信息

项目摘要

Exotic states of correlated electron systems are of strong interest in current research. In many materials, localization of electrons on certain lattice sites leads to strong correlations in all dimensions. In contrast, correlations are weak in many other materials, like the noble metals for example, because the electrons can move freely in the three dimensional metal. In these materials the reduction of dimensionality may increase correlations. Actually, in some quasi one dimensional systems a Tomanaga-Luttinger-Liquid (TLL) forms. In a collaboration with Prof. R. Claessen, PD J. Schäfer et al. at the University of Würzburg, we have investigated the system of gold chains on Ge(001). In gold, which is a weakly correlated metal as bulk material, a strongly correlated one dimensional electron system is formed due to reduction of dimensionality. For the first time the system offers the possibility to manipulate a TLL on the atomic scale, since the gold chains are accessible with the methods of surface science. Currently, Au/Ge(001) offers the possibility to investigate many open questions that were not accessible experimentally so far.In this project, the dimensionality shall be increased continously by placing single conducting bridges between the gold chains. As bridges, specially selected or even specially designed organic molecules shall be used. By selection of organic molecules with suitable anchor groups for the contact to gold, a suitable length for 1.6 nm distance between the chains and a suitable electron system for the transport of electrons at the fermi energy, we expect to have a controlled influence on the dimensionality of the electron system. The goal of the project is to investigate the transition from a 1D-TLL to a 2D-Fermi liquid, by placing local conducting bridges with different properties and at different densities between the atomic gold chains.
关联电子系统的奇异态是当前研究的热点。在许多材料中,电子在某些晶格位置上的局域化导致所有维度的强相关性。相比之下,在许多其他材料中,相关性很弱,例如贵金属,因为电子可以在三维金属中自由移动。在这些材料中,维数的降低可以增加相关性。实际上,在某些准一维系统中,形成Tomanaga-Luttinger-Liquid(TLL)。与R教授合作。在维尔茨堡大学的Claessen,PD J. Schäfer等人的研究中,我们研究了Ge(001)上的金链系统。金是一种弱关联的金属体材料,由于降维作用,形成了一个强关联的一维电子系统。该系统首次提供了在原子尺度上操纵TLL的可能性,因为金链可以用表面科学的方法来访问。目前,Au/Ge(001)为研究许多实验上尚无法解决的问题提供了可能性,在本项目中,将通过在金链之间放置单个导电桥来不断增加维数。作为桥,应使用特别选择或甚至特别设计的有机分子。通过选择具有合适的锚基团的有机分子与金接触,合适的长度为1.6 nm的链之间的距离和合适的电子系统在费米能量下的电子传输,我们希望有一个控制的影响的电子系统的维数。该项目的目标是通过在原子金链之间放置具有不同属性和不同密度的局部导电桥,研究从1D-TLL到2D-Fermi液体的转变。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. René Eugen Matzdorf其他文献

Professor Dr. René Eugen Matzdorf的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. René Eugen Matzdorf', 18)}}的其他基金

Untersuchung von Elektronen-Korrelationen und Elektron-Phonon Wechselwirkung mit Rastertunnelmikroskopie und -spektroskopie
使用扫描隧道显微镜和光谱学研究电子相关性和电子-声子相互作用
  • 批准号:
    5311682
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

高维稀疏数据聚类研究
  • 批准号:
    70771007
  • 批准年份:
    2007
  • 资助金额:
    16.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Navigating the Curse of Dimensionality in Euclidean Optimization Problems
职业:解决欧几里得优化问题中的维数灾难
  • 批准号:
    2337993
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
THE IMMUNE SELF-ASSOCIATED STORAGE ORGANELLE (SASO)
免疫自联存储细胞器 (SASO)
  • 批准号:
    10639168
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Risk stratifying indeterminate pulmonary nodules with jointly learned features from longitudinal radiologic and clinical big data
利用纵向放射学和临床大数据共同学习的特征对不确定的肺结节进行风险分层
  • 批准号:
    10678264
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
2023 Atherosclerosis
2023 动脉粥样硬化
  • 批准号:
    10675221
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Noradrenergic gating of astrocyte calcium-mediated homeostasis in vivo
星形胶质细胞钙介导体内稳态的去甲肾上腺素能门控
  • 批准号:
    10679269
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Cellular mechanisms for the degeneration and aging of human rotator cuff tears
人类肩袖撕裂变性和衰老的细胞机制
  • 批准号:
    10648672
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Delineating how nucleic acid sensing in tumor cells regulate anti-tumor immune responses
描述肿瘤细胞中的核酸传感如何调节抗肿瘤免疫反应
  • 批准号:
    10626284
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Neural basis of behavior in freely moving macaques
自由移动猕猴行为的神经基础
  • 批准号:
    10832869
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Identifying and quantifying genetic effects on neurodevelopmental trajectories in adolescents
识别和量化遗传对青少年神经发育轨迹的影响
  • 批准号:
    10817321
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Subtyping complex phenotypes via constrastive learning by leveraging electronic health records
利用电子健康记录通过对比学习对复杂表型进行亚型分类
  • 批准号:
    10799083
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了