EAGER: On-Demand Silicon Carbide Photonic Nanostructures for Quantum Optoelectronics at Telecom Wavelengths
EAGER:用于电信波长量子光电子学的按需碳化硅光子纳米结构
基本信息
- 批准号:1842350
- 负责人:
- 金额:$ 13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Single-photon emission at low-loss telecom C-band wavelength ~ 1550 nm is a critical component for the development of future long-distance quantum information and communication technologies using the existing fiber-optical-based infrastructure or in free-space. Recent attempts at realizing a telecom C-band single-photon source are limited by their unsuitable emission wavelength, and stringent fabrication and operation temperature requirements. This EAGER project proposes to develop critical device properties enabled by the development of erbium-doped silicon carbide photonic crystal nanostructures towards the realization for the first-time of room-temperature CMOS-compatible single-photon emitters at 1550 nm. The nanowire-array-based photonic crystal structures are grown in a self-aligned manner at predetermined positions through an innovative chemical synthesis route. The nanostructures not only facilitate the deterministic placement of erbium ions in the nanowires but are also pivotal in engineering the erbium-induced 1550 nm emission. The underlying hypothesis is that erbium integrated into photonic crystal nanostructures can experience a redistribution of its spontaneous light emission. By properly engineering photonic crystal nanostructures it is possible to control which optical modes are allowed or inhibited due to the photonic bandgap effect. The proposed scalable nanostructure platform provides high design adaptability, tunability, and integration capabilities with silicon nanoelectronics. The attained knowledge can be transformative as this project addresses key challenges and unknowns about the material and quantum properties of erbium ions in technologically-friendly silicon carbide photonic nanostructures. The fundamental understanding of these photonic nanostructures can expedite the incubation of pathways towards ubiquitous advances in nanophotonics, defect-based biological imaging and sensing, quantum storage of single-photons and long-distance quantum signal processing. Research and education are integrated as this project focuses on promoting scientific literacy through direct students' involvement in the proposed research. Students conducting this research will be trained and educated in a multifaceted research environment.The goal is to surpass the performance of state-of-the-art telecom quantum emission in solid-state hosts by integrating erbium ions into silicon carbide ultrathin photonic crystal nanostructures. The project involves fundamental research in developing vital properties, such as high precision placement and reduced non-radiative decay of erbium ions in silicon-based nanostructured materials, high pumping efficiency, photoluminescence yield, and photostability, enabled by this new class of silicon carbide photonic nanostructures, and the understanding of their interactions with external optical excitations. Two interlocked hypothesis-based research thrusts will be pursued: (a) Development of novel silicon carbide photonic crystal nanostructures through the deterministic placement of nanowires and erbium ions, and (b) Modification of the telecom-1540 nm emission of erbium ions by silicon carbide photonic nanostructures. The effects of erbium ion implantation (e.g., ion dose, incident angles) on the structural modifications (e.g., defect accumulation, ion redistribution) of nanowires will be explored to achieve single erbium ion isolation. Simulated statistical-distributions of the implanted ions and the structural properties of erbium-doped nanowire-based structures will be correlated with their optical characteristics to develop optimal ion implantation conditions to maximize the efficiency of erbium-induced 1540 nm emission. Theory and modeling will be employed to navigate experimental efforts and to engineeringly modify the erbium quantum luminescence properties, and light-matter interactions that are enabled by the photonic crystal nanostructures.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
低损耗电信c波段波长~ 1550 nm的单光子发射是利用现有光纤基础设施或自由空间发展未来远距离量子信息通信技术的关键组成部分。近年来,电信c波段单光子源的实现受到发射波长不合适、制造和工作温度要求严格的限制。这个EAGER项目提出通过开发掺铒碳化硅光子晶体纳米结构来开发关键器件特性,从而首次实现1550 nm的室温cmos兼容单光子发射器。通过一种创新的化学合成路线,纳米线阵列光子晶体结构在预定位置以自对准的方式生长。这种纳米结构不仅有助于确定铒离子在纳米线中的位置,而且在铒诱导的1550nm发射工程中也起着关键作用。潜在的假设是,集成到光子晶体纳米结构中的铒可以经历自发光发射的重新分配。通过适当地设计光子晶体纳米结构,可以控制由于光子带隙效应而允许或抑制哪些光学模式。所提出的可扩展纳米结构平台具有高设计适应性、可调性和集成能力。由于该项目解决了技术友好型碳化硅光子纳米结构中铒离子的材料和量子特性的关键挑战和未知问题,因此所获得的知识可能具有变革性。对这些光子纳米结构的基本理解可以加速在纳米光子学、基于缺陷的生物成像和传感、单光子量子存储和远距离量子信号处理等领域取得普遍进展的途径的孕育。研究和教育相结合,因为这个项目的重点是通过学生直接参与拟议的研究来提高科学素养。进行这项研究的学生将在多方面的研究环境中接受培训和教育。目标是通过将铒离子集成到碳化硅超薄光子晶体纳米结构中,在固态主机中超越最先进的电信量子发射性能。该项目涉及开发重要特性的基础研究,例如硅基纳米结构材料中铒离子的高精度放置和减少非辐射衰变,高泵浦效率,光致发光产量和光稳定性,这些都是由这种新型碳化硅光子纳米结构实现的,以及它们与外部光激发的相互作用的理解。两个相互关联的假设为基础的研究重点将进行:(a)通过纳米线和铒离子的确定性放置开发新型碳化硅光子晶体纳米结构,以及(b)通过碳化硅光子纳米结构修饰铒离子的电信-1540 nm发射。探讨铒离子注入(如离子剂量、入射角)对纳米线结构修饰(如缺陷积累、离子再分布)的影响,以实现单铒离子隔离。模拟注入离子的统计分布和掺铒纳米线结构的结构特性将与它们的光学特性相关联,从而开发出最佳的离子注入条件,以最大限度地提高铒诱导1540 nm发射的效率。理论和建模将用于指导实验工作,并在工程上修改铒的量子发光特性,以及光子晶体纳米结构所实现的光-物质相互作用。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Engineered telecom emission and controlled positioning of Er3+ enabled by SiC nanophotonic structures
- DOI:10.1515/nanoph-2019-0535
- 发表时间:2020-04
- 期刊:
- 影响因子:7.5
- 作者:Natasha Tabassum;Vasileios Nikas;Alex E. Kaloyeros;V. Kaushik;Edward Crawford;Mengbing Huang;S. Gallis
- 通讯作者:Natasha Tabassum;Vasileios Nikas;Alex E. Kaloyeros;V. Kaushik;Edward Crawford;Mengbing Huang;S. Gallis
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Spyridon Galis其他文献
Spyridon Galis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
EstimatingLarge Demand Systems with MachineLearning Techniques
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
“on-demand”释银的双响应性水凝胶体系治疗糖尿病牙周炎的作用机制探究
- 批准号:82301140
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
SBIR Phase I: On-Demand Color Changing Materials
SBIR 第一阶段:按需变色材料
- 批准号:
2304234 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
ERI: Data-Driven Analysis and Dynamic Modeling of Residential Power Demand Behavior: Using Long-Term Real-World Data from Rural Electric Systems
ERI:住宅电力需求行为的数据驱动分析和动态建模:使用农村电力系统的长期真实数据
- 批准号:
2301411 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Collaborative Research: Contribution of allochthonous DON to biological nitrogen demand in the subtropical North Pacific
合作研究:异地 DON 对北太平洋副热带生物氮需求的贡献
- 批准号:
2343223 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
Continuing Grant
Solar-powered methanol conversion for on-demand hydrogen production
太阳能甲醇转化用于按需制氢
- 批准号:
DE240100810 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
Discovery Early Career Researcher Award
Collaborative Research: Contribution of allochthonous DON to biological nitrogen demand in the subtropical North Pacific
合作研究:异地 DON 对北太平洋副热带生物氮需求的贡献
- 批准号:
2343225 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
Continuing Grant
Collaborative Research: Contribution of allochthonous DON to biological nitrogen demand in the subtropical North Pacific
合作研究:异地 DON 对北太平洋副热带生物氮需求的贡献
- 批准号:
2343224 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
Continuing Grant
PFI-TT: Smart windows for on-demand control of solar heat and daylight
PFI-TT:用于按需控制太阳热能和日光的智能窗户
- 批准号:
2345804 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
HertsLynx CAM On-Demand
HertsLynx CAM 点播
- 批准号:
10082391 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
Legacy Department of Trade & Industry
A Socio-technical Study of Electricity Demand, Efficiency and Flexibility in the Urban Housing Sector of Burkina Faso
布基纳法索城市住房部门电力需求、效率和灵活性的社会技术研究
- 批准号:
EP/Y000935/1 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
Research Grant
FMRG: Cyber: Manufacturing USA: Material-on-demand manufacturing through convergence of manufacturing, AI and materials science
FMRG:网络:美国制造:通过制造、人工智能和材料科学的融合实现按需制造材料
- 批准号:
2328395 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
Standard Grant