EAGER: RF Switches Using 2D Phase Change Materials

EAGER:使用 2D 相变材料的射频开关

基本信息

  • 批准号:
    1843395
  • 负责人:
  • 金额:
    $ 12.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-15 至 2021-01-31
  • 项目状态:
    已结题

项目摘要

Non-technical:Telecommunications architectures have become increasingly more complex as the number of people and devices connected to the world's wireless infrastructure grows. One key characteristic of multi-purpose, high performance systems is reconfigurability--the ability to tune the frequency band at which a radio operates. Switches are the devices that form the backbone of reconfigurable radio-frequency (RF) front-end circuits and are therefore the subject of intense research. Phase change switches are a particularly promising technology. These devices rely on changing electrical conductivity of a nanomaterial by changing the crystal structure through the application of voltage or heat. Previous generations of phase change switches have relied on films that are tens of nanometers thick. This EAGER project aims to demonstrate the first atomically thick ( 1 nm) phase change switch. The switch will be based on molybdenum telluride (MoTe2), an atomically thin semiconductor that belongs to a class of materials known as transition metal dichalcogenides. Atomically thin materials, often referred to as two-dimensional materials, offer a number of interesting benefits. These include high strain limits for flexible electronics and higher electron mobilities than competing thin film technologies. Different two-dimensional materials can also be stacked vertically to form new materials with unique properties. Critical to RF switch performance, atomically thick phase change materials have been projected to require lower voltages to induce a phase change. This will lower the energy consumption of the switches themselves, as well as the overall systems that they are built into. Overall, low-energy reconfigurable RF circuits could have a profound impact in the development of portable, flexible or transparent wireless systems. Their development could also lead to new applications such as portable nano-radios, remote nodes for telecommunications and sensors for health monitoring.Technical:The objective of the proposed work is to demonstrate the operation of low voltage, 2D material-based phase change switches at radio-frequency (RF) frequencies. Switches are required for reconfigurable RF front-end circuits in wireless systems with multi-band transmit/receive capabilities. Compared to solid-state or electro-mechanical, phase change switches promise low loss, high cut-off frequencies, high isolation and rapid switching. Two-dimensional (2D) molybdenum telluride (MoTe2) has been shown to demonstrate phase change properties, with theoretically projected voltage requirements significantly lower than traditional thin film phase change materials. Low voltage switching, coupled with flexibility and transparency make 2D phase change switches attractive candidates for next-generation, mobile nanosystems. The proposed work will experimentally validate and characterize large area, 2D MoTe2 RF switches. This will involve fabrication of the devices, as well as experimental exploration of the low-voltage and frequency response performance limits. These results will be key to the future development of phase change devices, the establishment of predictive models and the demonstration of reconfigurable nano-circuits. The intellectual merit of this EAGER proposal comprises of the following: (1) exploring and establishing a fundamental understanding of trade-offs between phase control techniques, such as heat and voltage, applied to 2D MoTe2 and related allows in order to establish behavioral models and achieve low-energy switching devices; (2) unlocking large-area chemical vapor deposition (CVD) of 2D phase change films, paying particular attention to thickness control for low-energy phase transitions, as well as increased mobility for high-frequency operation; and (3) establishing basic design procedures for the first RF switches using 2D phase change materials, which will be validated through fabrication and characterization. This results of proposed work stand to have immense implications for low-power wireless circuits and accelerate the advent of wireless sensor nodes within the Internet of Things and beyond.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性:随着连接到世界无线基础设施的人员和设备数量的增长,电信架构变得越来越复杂。多用途、高性能系统的一个关键特性是可重新配置性--能够调谐无线电工作的频带。开关是构成可重构射频(RF)前端电路的骨干的器件,因此是密集研究的主题。相变开关是一种特别有前途的技术。这些器件依赖于通过施加电压或热量改变晶体结构来改变纳米材料的电导率。前几代的相变开关依赖于几十纳米厚的薄膜。EAGER项目旨在展示第一个原子厚度(1 nm)的相变开关。该开关将基于碲化钼(MoTe 2),这是一种原子级薄的半导体,属于一类被称为过渡金属二硫属化物的材料。原子级薄的材料,通常被称为二维材料,提供了许多有趣的好处。这些包括柔性电子器件的高应变极限和比竞争薄膜技术更高的电子迁移率。不同的二维材料也可以垂直堆叠,形成具有独特性能的新材料。对于RF开关性能至关重要的是,原子厚度的相变材料已经被设计为需要较低的电压来引起相变。这将降低交换机本身的能耗,以及它们所内置的整个系统的能耗。总的来说,低能耗可重构RF电路可能会对便携式、灵活或透明的无线系统的发展产生深远的影响。他们的发展也可能导致新的应用,如便携式纳米无线电,远程节点的电信和传感器的健康monitoring.Technical:拟议的工作的目标是证明低电压,二维材料为基础的相变开关在射频(RF)频率的操作。在具有多频带发射/接收能力的无线系统中,可重新配置的RF前端电路需要开关。与固态或机电开关相比,相变开关具有低损耗、高截止频率、高隔离度和快速开关等优点。二维(2D)碲化钼(MoTe 2)已被证明具有相变特性,理论上预计的电压要求显著低于传统薄膜相变材料。低电压开关,加上灵活性和透明度,使2D相变开关有吸引力的候选人为下一代,移动的纳米系统。拟议的工作将通过实验验证和表征大面积2D MoTe 2 RF开关。这将涉及设备的制造,以及低电压和频率响应性能限制的实验探索。这些结果将是关键的相变器件的未来发展,预测模型的建立和可重构纳米电路的演示。该EAGER方案的智力价值包括以下内容:(1)探索并建立对应用于2D MoTe 2和相关允许的相位控制技术(例如热量和电压)之间的权衡的基本理解,以建立行为模型并实现低能量开关器件;(2)解锁2D相变膜的大面积化学气相沉积(CVD),特别关注低能量相变的厚度控制,以及高频操作的增加的迁移率;以及(3)建立使用2D相变材料的第一RF开关的基本设计程序,其将通过制造和表征来验证。这项工作的成果将对低功耗无线电路产生巨大影响,并加速物联网及其他领域无线传感器节点的出现。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Chemical treatment effects on Schottky contacts to metalorganic chemical vapor deposited n-type N-polar GaN
  • DOI:
    10.1063/5.0015140
  • 发表时间:
    2020-08
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    D. Khachariya;D. Szymanski;R. Sengupta;P. Reddy;E. Kohn;Z. Sitar;R. Collazo;S. Pavlidis
  • 通讯作者:
    D. Khachariya;D. Szymanski;R. Sengupta;P. Reddy;E. Kohn;Z. Sitar;R. Collazo;S. Pavlidis
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Spyridon Pavlidis其他文献

Spyridon Pavlidis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Spyridon Pavlidis', 18)}}的其他基金

CAREER: Engineering Ultra-Wide Bandgap III-Nitride Devices for Highly Efficient and Robust Electronics
职业:设计超宽带隙 III 族氮化物器件,实现高效、稳健的电子产品
  • 批准号:
    2145340
  • 财政年份:
    2022
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Continuing Grant
Collaborative Research: Improving the Performance and Design of Potentiometric Biosensors for the Detection of Extracellular Histones in Blood with Deep Learning
合作研究:利用深度学习改进用于检测血液中细胞外组蛋白的电位生物传感器的性能和设计
  • 批准号:
    1936772
  • 财政年份:
    2019
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Standard Grant
NSF East Asia and Pacific Summer Institute (EAPSI) for FY 2013 in Taiwan
2013 财年 NSF 东亚及太平洋暑期学院 (EAPSI) 在台湾
  • 批准号:
    1316882
  • 财政年份:
    2013
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Fellowship Award

相似国自然基金

SH3RF2泛素化PCLAF抑制DNA同源重组修复促进幽门螺杆菌感染致胃黏膜损伤的机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0 万元
  • 项目类别:
    青年科学基金项目
麦粒灸联合雷公藤制剂对类风湿关节炎患者CRP、IL-6、RF的影响
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    8.0 万元
  • 项目类别:
    省市级项目
籼稻9311中WA型微效恢复基因Rf19(t)的克隆与功能研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于靶点垂钓策略研究人参皂苷Rf改善NAFLD肝脏脂质沉积的作用靶点与机制
  • 批准号:
    82304580
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
泽蛙多肽RL-RF10促进缺损角化龈上皮再生作用及机制研究
  • 批准号:
    82360185
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
SH3RF2经FoxO1泛素化修饰调控脂质沉积在动脉粥样硬化斑块形成中的作用及机制研究
  • 批准号:
    82360103
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
大豆Rf2基因调控CMS-RN不育胞质育性恢复的分子机制解析
  • 批准号:
    32372149
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
Sh3rf2缺失导致孤独症的致病机制研究
  • 批准号:
    32330038
  • 批准年份:
    2023
  • 资助金额:
    225 万元
  • 项目类别:
    重点项目
空天地一体化网络THz/RF多频段通信性能分析与频谱优化研究
  • 批准号:
    2023JJ40774
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
E3泛素连接酶SH3RF2在病理性心肌肥厚中的功能与机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Collaborative Research: Large-Scale Wireless RF Networks of Microchip Sensors
合作研究:微芯片传感器的大规模无线射频网络
  • 批准号:
    2322601
  • 财政年份:
    2024
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Standard Grant
Innovative hydrogel gaskets for aerospace and RF communication applications (InnoKets)
用于航空航天和射频通信应用的创新水凝胶垫片 (InnoKets)
  • 批准号:
    EP/Y014642/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Fellowship
RF-EH機能を導入した異種混在型無線センサネットワークモデルの開発
开发包含 RF-EH 功能的异构无线传感器网络模型
  • 批准号:
    24K14928
  • 财政年份:
    2024
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
多物質濃度を同時測定するDC-RF広帯域周波数スキャン超小型非侵襲血糖値センサ
DC-RF宽带频率扫描超紧凑型无创血糖传感器,可同时测量多种物质的浓度
  • 批准号:
    24K07612
  • 财政年份:
    2024
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Frequency Agile Real-Time Reconfigurable RF Analog Co-Processor Design Leveraging Engineered Nanoparticle and 3D Printing
职业:利用工程纳米颗粒和 3D 打印进行频率捷变实时可重构射频模拟协处理器设计
  • 批准号:
    2340268
  • 财政年份:
    2024
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Continuing Grant
CAREER: Semiconductor on Nitride PhoXonic Integrated Circuit (SONIC) Platform for Chip-Scale RF and Optical Signal Processing
职业:用于芯片级射频和光信号处理的氮化物 PhoXonic 集成电路 (SONIC) 平台上的半导体
  • 批准号:
    2340405
  • 财政年份:
    2024
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Continuing Grant
NSF-SNSF: Rapid Beamforming for Massive MIMO using Machine Learning on RF-only and Multi-modal Sensor Data
NSF-SNSF:在纯射频和多模态传感器数据上使用机器学习实现大规模 MIMO 的快速波束成形
  • 批准号:
    2401047
  • 财政年份:
    2024
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Standard Grant
CAREER: Novel Microplasmas for Highly Compact and Versatile RF Electronics
事业:用于高度紧凑和多功能射频电子器件的新型微等离子体
  • 批准号:
    2337815
  • 财政年份:
    2024
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Continuing Grant
Collaborative Research: Large-Scale Wireless RF Networks of Microchip Sensors
合作研究:微芯片传感器的大规模无线射频网络
  • 批准号:
    2322600
  • 财政年份:
    2024
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Standard Grant
NMR用最高性能超伝導RFコイルの開発
开发用于 NMR 的最高性能超导射频线圈
  • 批准号:
    24K07559
  • 财政年份:
    2024
  • 资助金额:
    $ 12.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了