PIRE: Bio-Inspired Materials and Systems
PIRE:仿生材料和系统
基本信息
- 批准号:1844463
- 负责人:
- 金额:$ 513.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
LaShanda Korley, Jonathan Pokorski, Gary Wnek (Case Western Reserve University), Stuart Rowan (University of Chicago)Materials that are found in Nature display a wide range of properties including responsiveness to the environment, signal transmission, and the ability to adapt to support life. Learning from Nature or biomimicry can be a powerful tool in designing, developing and accessing the next generation of synthetic materials and systems. Furthermore, biomimetic concepts will account for an estimated $1.2 trillion in global economic development, and have already contributed to familiar products like Velcro and wind turbines. Thus, there is a critical need for the US to educate the next generation of internationally-minded biomimicry thinkers to develop a new wave of innovative materials. As such, this PIRE brings together an interdisciplinary team of US and Swiss collaborators to carry out research and education in the area of Bio-Inspired Materials & Systems. Specifically, the PIRE will utilize inspiration from Nature to design new materials that can change toughness in response to their environment, are safer and more effective biological implants, will transmit nerve-like electrical signals, and can respond to the environment to initiate biological processes, all for use in soft robotic applications. A range of innovative educational and outreach activities will train US students in learning from Nature and in a bio-inspired philosophy. This training will happen in an international context with Swiss collaborators, world leaders in biomimetic concepts and research. Students will gain exposure to themes cutting across chemistry, polymers, physics, biology, and engineering in the development of multi-functional, active materials. Mentoring, diversity, cultural competency, globalization, and effective scientific communication are emphasized as critical elements of the PIRE.Nature has a multitude of examples of complex materials and systems that go well beyond the current capabilities of synthetic systems. The innovation potential in this domain is vast and a large-scale interdisciplinary effort is required to realize paradigm-changing scientific breakthroughs. To that end, an international partnership between biomimicry experts at Case Western Reserve University (CWRU), the University of Chicago (UoC), and the University of Fribourg/Adolphe Merkle Institute in Switzerland in Bio-inspired Materials and Systems is established. Building upon collaborative strengths in polymer synthesis, computational modeling, mechanical characterization, robotics, imaging, manufacturing, biology, biomedical engineering, physics, and molecular engineering, five Bio-inspired Materials and Systems projects are envisioned: (1) Silk-inspired Nanocomposites: Spider/Caddisfly Silk Mimics; (2) Sea Cucumber, Squid Beak and Pine Cone Inspired Adaptive Composites; (3) Excitable Polyelectrolyte Fiber Networks/Gels: Toward Artificial Neurons; (4) Dynamic and Functional Fibers Inspired by the Extracellular Matrix; and (5) Soft Robotics Inspired by Worm Locomotion. These research thrusts are directed toward the development of functional, programmable, and responsive materials for deployment in soft robotic systems. Faculty, graduate, and undergraduate students will spend time in Switzerland engaging in synergistic research/educational activities. An educational and innovation partnership with local thought leaders in biomimicry will guide the training of the next-generation of global scientists and engineers in this interdisciplinary endeavor. Effective science communication will be highlighted via existing programming with the Museum of Science and Industry (MSI) of Chicago. Community outreach activities include research opportunities at CWRU and UoC for underrepresented high school students in STEM as part of an expanded Biomimetic Envoys program and the development of biomimetic hands-on demonstrations for annual participation in the Martin Luther King Jr. (MLK) Discovery Day at the Cleveland Museum of Natural History.
LaShanda Korley, Jonathan Pokorski, Gary Wnek(凯斯西储大学),Stuart Rowan(芝加哥大学)在自然界中发现的材料显示出广泛的特性,包括对环境的响应性,信号传输以及适应生命的能力。向自然或仿生学学习可以成为设计、开发和使用下一代合成材料和系统的有力工具。此外,仿生学概念将为全球经济发展贡献约1.2万亿美元,并且已经为维可牢尼龙搭扣和风力涡轮机等熟悉的产品做出了贡献。因此,美国迫切需要教育下一代具有国际思维的仿生学思想家,以开发新一波创新材料。因此,这个PIRE汇集了一个由美国和瑞士合作者组成的跨学科团队,在仿生材料和系统领域开展研究和教育。具体来说,PIRE将利用来自《自然》的灵感来设计新的材料,这些材料可以根据环境改变韧性,是更安全、更有效的生物植入物,可以传输类似神经的电信号,并可以响应环境来启动生物过程,所有这些都将用于软机器人应用。一系列创新的教育和推广活动将培养美国学生向自然学习和以生物为灵感的哲学。该培训将在国际背景下进行,瑞士合作者是仿生概念和研究的世界领导者。学生将接触到跨化学、聚合物、物理、生物和多功能活性材料开发工程的主题。指导、多样性、文化能力、全球化和有效的科学交流被强调为PIRE的关键要素。自然界有许多复杂材料和系统的例子,远远超出了目前合成系统的能力。这一领域的创新潜力巨大,需要大规模的跨学科努力才能实现改变范式的科学突破。为此,凯斯西储大学(CWRU)、芝加哥大学(UoC)和瑞士弗里堡大学/阿道夫·默克尔研究所的仿生学专家在仿生材料和系统方面建立了国际合作伙伴关系。基于在聚合物合成、计算建模、机械表征、机器人技术、成像、制造、生物学、生物医学工程、物理学和分子工程方面的合作优势,设想了五个生物启发材料和系统项目:(1)丝绸启发纳米复合材料:蜘蛛/Caddisfly Silk Mimics;(2)海参、鱿鱼喙、松果自适应复合材料;(3)可兴奋性聚电解质纤维网络/凝胶:面向人工神经元;(4)细胞外基质激发的动态和功能性纤维;(5)基于蠕虫运动的软机器人。这些研究的重点是开发用于软机器人系统的功能性、可编程和响应性材料。教师,研究生和本科生将花时间在瑞士从事协同研究/教育活动。与当地仿生学思想领袖的教育和创新伙伴关系将指导在这一跨学科努力中培养下一代全球科学家和工程师。有效的科学传播将通过与芝加哥科学与工业博物馆(MSI)的现有项目得到强调。社区外展活动包括在CWRU和UoC为未被充分代表的高中学生提供STEM研究机会,作为扩大的仿生特使计划的一部分,以及在克利夫兰自然历史博物馆每年参加马丁·路德·金(MLK)发现日的仿生实践演示的发展。
项目成果
期刊论文数量(31)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Enabling In Vivo Photocatalytic Activation of Rapid Bioorthogonal Chemistry by Repurposing Silicon-Rhodamine Fluorophores as Cytocompatible Far-Red Photocatalysts.
- DOI:10.1021/jacs.1c05547
- 发表时间:2021-07-21
- 期刊:
- 影响因子:15
- 作者:Wang C;Zhang H;Zhang T;Zou X;Wang H;Rosenberger JE;Vannam R;Trout WS;Grimm JB;Lavis LD;Thorpe C;Jia X;Li Z;Fox JM
- 通讯作者:Fox JM
Gradient supramolecular interactions and tunable mechanics in polychaete jaw inspired supramolecular interpenetrating networks
多毛类颚启发的超分子互穿网络中的梯度超分子相互作用和可调力学
- DOI:10.1016/j.europolymj.2019.04.015
- 发表时间:2019
- 期刊:
- 影响因子:6
- 作者:Chase B. Thompson, Sourave Chatterjee
- 通讯作者:Chase B. Thompson, Sourave Chatterjee
Rendering Polyurethane Hydrophilic for Efficient Cellulose Reinforcement in Melt‐Spun Nanocomposite Fibers
使聚氨酯具有亲水性,以有效增强熔纺纳米复合纤维中的纤维素
- DOI:10.1002/admi.202201979
- 发表时间:2023
- 期刊:
- 影响因子:5.4
- 作者:Redondo, Alexandre;Bast, Livia K.;Djeghdi, Kenza;Airoldi, Martino;Jang, Daseul;Korley, LaShanda T. J.;Steiner, Ullrich;Bruns, Nico;Gunkel, Ilja
- 通讯作者:Gunkel, Ilja
Surfactant-Free Latex Nanocomposites Stabilized and Reinforced by Hydrophobically Functionalized Cellulose Nanocrystals
- DOI:10.1021/acsapm.0c00263
- 发表时间:2020-05
- 期刊:
- 影响因子:5
- 作者:Yefei Zhang;Han Yang;Nevin A. Naren;S. Rowan
- 通讯作者:Yefei Zhang;Han Yang;Nevin A. Naren;S. Rowan
Virtual special issue “Biomimetic Polymers”
虚拟特刊“仿生聚合物”
- DOI:10.1016/j.eurpolymj.2019.109370
- 发表时间:2020
- 期刊:
- 影响因子:6
- 作者:Bruns, Nico;Scheibel, Thomas
- 通讯作者:Scheibel, Thomas
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LaShanda Korley其他文献
LaShanda Korley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LaShanda Korley', 18)}}的其他基金
CAS: Lignocellulosic building blocks towards high-performance and sustainable polysulfones and polyurethanes
CAS:用于高性能和可持续聚砜和聚氨酯的木质纤维素结构单元
- 批准号:
2004682 - 财政年份:2020
- 资助金额:
$ 513.15万 - 项目类别:
Standard Grant
Harnessing the power of polymer phase interactions in the design of supramolecular interpenetrating networks
在超分子互穿网络设计中利用聚合物相相互作用的力量
- 批准号:
1833479 - 财政年份:2018
- 资助金额:
$ 513.15万 - 项目类别:
Standard Grant
PIRE: Bio-Inspired Materials and Systems
PIRE:仿生材料和系统
- 批准号:
1743475 - 财政年份:2017
- 资助金额:
$ 513.15万 - 项目类别:
Continuing Grant
Harnessing the power of polymer phase interactions in the design of supramolecular interpenetrating networks
在超分子互穿网络设计中利用聚合物相相互作用的力量
- 批准号:
1608441 - 财政年份:2016
- 资助金额:
$ 513.15万 - 项目类别:
Standard Grant
CAREER: Hierarchical Polymeric Hybrids - Lessons from Nature in Mechanical Behavior
职业:分层聚合物杂化物 - 机械行为中的自然教训
- 批准号:
0953236 - 财政年份:2010
- 资助金额:
$ 513.15万 - 项目类别:
Continuing Grant
BRIGE: Toughening Mechanisms in Supramolecular Networks with Photocrosslinkable Moieties
BRIGE:具有可光交联部分的超分子网络的增韧机制
- 批准号:
0824333 - 财政年份:2008
- 资助金额:
$ 513.15万 - 项目类别:
Standard Grant
相似国自然基金
骨胶原(Bio-Oss Collagen)联合龈下喷砂+骨皮质切开术治疗
根分叉病变的临床疗效研究
- 批准号:2024JJ9542
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
智能双栅调控InSe Bio-FET可控构筑与原位细胞传感机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于通用型 M13-Bio 噬菌体信号放大的动态
光散射免疫传感检测平台的建立及机制研究
- 批准号:Q24C200014
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
2D/2D BiO2-x/graphyne异质结光热活化过硫酸盐降解水体中抗生素的机理研究
- 批准号:LY23E080003
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
过渡金属掺杂与原位外延生长Z型异质结协同增强BiO2-x的宽光谱光催化活化分子氧去除水中难降解微塑料的机理研究
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:
Z型异质结“(金属氧化物MOx@薄层碳TC)/BiO1-xCl”的可控构筑及其光催化性能的研究
- 批准号:22005126
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
BIO促进脂肪来源干细胞修复急性心肌梗死的作用及机制
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
6-BIO 抗肝脏衰老的作用与作用机制研究
- 批准号:19ZR1438800
- 批准年份:2019
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于MOFs热解构建薄层碳包覆的BiO1-xX基Z型异质结及其光催化水氧化苯制苯酚反应的研究
- 批准号:
- 批准年份:2019
- 资助金额:0.0 万元
- 项目类别:省市级项目
可回收MFe2O4/二维 (BiO)2CO3 复合纳米矿物材料光降解再生水中顽固型有机物机理
- 批准号:41877481
- 批准年份:2018
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
Convergence Accelerator Track M: Bio-Inspired Design of Robot Hands for Use-Driven Dexterity
融合加速器轨道 M:机器人手的仿生设计,实现使用驱动的灵活性
- 批准号:
2344109 - 财政年份:2024
- 资助金额:
$ 513.15万 - 项目类别:
Standard Grant
CAREER: SHF: Bio-Inspired Microsystems for Energy-Efficient Real-Time Sensing, Decision, and Adaptation
职业:SHF:用于节能实时传感、决策和适应的仿生微系统
- 批准号:
2340799 - 财政年份:2024
- 资助金额:
$ 513.15万 - 项目类别:
Continuing Grant
Bio-inspired Nanoparticles for Mechano-Regulation of Stem Cell Fate
用于干细胞命运机械调节的仿生纳米颗粒
- 批准号:
DP240102315 - 财政年份:2024
- 资助金额:
$ 513.15万 - 项目类别:
Discovery Projects
PFI-TT: Bio-inspired enhancement of concrete for carbon sequestration and longevity
PFI-TT:仿生增强混凝土以实现碳封存和长寿
- 批准号:
2329856 - 财政年份:2024
- 资助金额:
$ 513.15万 - 项目类别:
Continuing Grant
NSF Convergence Accelerator Track M: Bio-Inspired Surface Design for High Performance Mechanical Tracking Solar Collection Skins in Architecture
NSF Convergence Accelerator Track M:建筑中高性能机械跟踪太阳能收集表皮的仿生表面设计
- 批准号:
2344424 - 财政年份:2024
- 资助金额:
$ 513.15万 - 项目类别:
Standard Grant
RII Track-4: NSF: Bio-inspired Solutions to Prevent Soil Erosion in Farmland and Scouring in Fluvial Regions
RII Track-4:NSF:防止农田水土流失和河流地区冲刷的仿生解决方案
- 批准号:
2327384 - 财政年份:2024
- 资助金额:
$ 513.15万 - 项目类别:
Standard Grant
CAREER: Reinventing Computer Vision through Bio-inspired Retinomorphic Vision Sensors, Corticomorphic Compute-In-Memory Processors and Event-based Algorithms
职业:通过仿生视网膜形态视觉传感器、皮质形态内存计算处理器和基于事件的算法重塑计算机视觉
- 批准号:
2338171 - 财政年份:2024
- 资助金额:
$ 513.15万 - 项目类别:
Continuing Grant
NSF Convergence Accelerator Track M: Nature Inspired Bio-manufactured Terminal Hydroxylated Fatty Acid Copolyesters
NSF 融合加速器轨道 M:受自然启发的生物制造末端羟基化脂肪酸共聚酯
- 批准号:
2344366 - 财政年份:2024
- 资助金额:
$ 513.15万 - 项目类别:
Standard Grant
CAREER: Geometric and Electronic Contributions to Bio-inspired Reactivities of Heme-superoxide Intermediates
职业:几何和电子对血红素超氧化物中间体的仿生反应活性的贡献
- 批准号:
2422277 - 财政年份:2024
- 资助金额:
$ 513.15万 - 项目类别:
Continuing Grant
CAREER: Toward energy-efficient bio-inspired magnonic processing with nanomagnetic arrays
职业:利用纳米磁性阵列实现节能的仿生磁力处理
- 批准号:
2339475 - 财政年份:2024
- 资助金额:
$ 513.15万 - 项目类别:
Continuing Grant