CAREER: Quantum Systems with Deterministic Disorder
职业:具有确定性无序的量子系统
基本信息
- 批准号:1846114
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Disordered quantum systems are fundamental objects in modern mathematical physics, since, due to presence of heat, any real-life system has some level of noise in it. Systems with noise/disorder are often studied by probabilistic methods and assume that the noise is random. The main scope of the project is to study systems where the noise has additional structure and has deterministic (non-random) nature. In physics, strong random disorder often implies that the system becomes an insulator and prevents electrons in it from moving freely. Would it also be true for some systems with non-random disorder? If yes, which properties make non-random systems behave like random and can it be measured? Are there any additional effects if the disorder is not strong? The main goal of the project is to address these questions on many levels, which will include work with undergraduate and graduate students, development of graduate courses on dynamics and spectral theory, and developing a course for high school students that would illustrate connections between basic linear algebra and physics, providing them skills and motivation for possible further education in STEM.This project incorporates teaching and research activities on the analysis of a class of models of mathematical quantum physics, including developing abstract techniques of operator theory and establishing rigorous results on more concrete systems. All proposed models involve disorder, however, unlike usual probabilistic view on disordered systems, the main goal will be studying the disorder in a completely deterministic setting, or with a very small number of random/ergodic parameters. An example of such system would be a Schrodinger operator with dynamically-defined potential, where the underlying dynamical system has small dimension and low degree of mixing (for example, irrational rotation). Typically, quantum systems with large random disorder tend to prevent electrons from moving freely (Anderson localization). To answer even basic questions about electron transport in deterministic disordered systems, one must replace usual probabilistic methods by methods of number theory, ergodic theory, semi-algebraic geometry, and other deep areas. The main directions of the project involve analysis of localization/delocalization for systems of interacting quasiperiodic particles and the effect of interaction, perturbative methods for single-particle operators with rough potentials, perturbation properties for spectral bands of periodic operators, and abstract methods of operator theory applied to almost commuting operators and matrices, with applications to quantum systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
无序量子系统是现代数学物理中的基本对象,因为由于热的存在,任何现实生活中的系统都有一定程度的噪声。具有噪声/无序的系统通常被用概率方法来研究,并且假设噪声是随机的。该项目的主要范围是研究噪声具有附加结构和确定性(非随机)性质的系统。在物理学中,强烈的随机无序通常意味着系统成为绝缘体,阻止其中的电子自由移动。对于一些非随机无序的系统来说,这也是真的吗?如果是,哪些属性使非随机系统表现得像随机系统?它可以被测量吗?如果这种紊乱不强烈,还有什么额外的影响吗?该项目的主要目标是在多个层面上解决这些问题,包括与本科生和研究生合作,开发动力学和光谱理论的研究生课程,并为高中生开发一门课程,说明基本线性代数和物理之间的联系,为他们提供技能和动力,以便在STEM中继续深造。该项目包括分析一类数学量子物理模型的教学和研究活动,包括开发抽象的算符理论技术,并在更具体的系统上建立严格的结果。所有已提出的模型都涉及无序,然而,与通常关于无序系统的概率观点不同,主要目标将是在完全确定的环境中或在非常少量的随机/遍历参数的情况下研究无序。这类系统的一个例子是具有动态定义的势的薛定谔算符,其中底层动力系统具有小维度和低混合度(例如,无理旋转)。通常,具有大的随机无序的量子系统倾向于阻止电子自由移动(安德森定域化)。要回答有关确定性无序系统中电子输运的基本问题,就必须用数论、遍历理论、半代数几何和其他更深层次的方法来取代通常的概率方法。该项目的主要方向涉及相互作用准周期粒子系统的局域/离域分析和相互作用的影响,具有粗糙势的单粒子算子的微扰方法,周期算子光谱带的微扰性质,以及应用于量子系统的几乎交换算子和矩阵的算子理论的抽象方法。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为是值得支持的。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Convergence of perturbation series for unbounded monotone quasiperiodic operators
- DOI:10.1016/j.aim.2022.108647
- 发表时间:2020-05
- 期刊:
- 影响因子:1.7
- 作者:I. Kachkovskiy;L. Parnovski;R. Shterenberg
- 通讯作者:I. Kachkovskiy;L. Parnovski;R. Shterenberg
Perturbative diagonalization for Maryland-type quasiperiodic operators with flat pieces
- DOI:10.1063/5.0042994
- 发表时间:2021-02
- 期刊:
- 影响因子:1.3
- 作者:I. Kachkovskiy;Stanislav Krymski;L. Parnovski;R. Shterenberg
- 通讯作者:I. Kachkovskiy;Stanislav Krymski;L. Parnovski;R. Shterenberg
Absolute Continuity of the Spectrum of the Periodic Schrödinger Operator in a Cylinder with Robin Boundary Condition
具有Robin边界条件的圆柱体中周期性薛定谔算子谱的绝对连续性
- DOI:10.1134/s0016266320020045
- 发表时间:2020
- 期刊:
- 影响因子:0.4
- 作者:Kachkovskiy, I. V.;Filonov, N. D.
- 通讯作者:Filonov, N. D.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ilya Kachkovskiy其他文献
Perturbative Diagonalization and Spectral Gaps of Quasiperiodic Operators on $$\ell ^2(\mathbb Z^d)$$ with Monotone Potentials
- DOI:
10.1007/s00220-025-05280-y - 发表时间:
2025-05-07 - 期刊:
- 影响因子:2.600
- 作者:
Ilya Kachkovskiy;Leonid Parnovski;Roman Shterenberg - 通讯作者:
Roman Shterenberg
Ilya Kachkovskiy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ilya Kachkovskiy', 18)}}的其他基金
FRG: Collaborative Research: Non-Perturbative Analysis for Multi-Dimensional Quasiperiodic Systems
FRG:协作研究:多维准周期系统的非微扰分析
- 批准号:
2052519 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
The 2020 & 2021 Great Lakes Mathematical Physics Meetings
2020年
- 批准号:
1955304 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Spectral Theory of Periodic and Quasiperiodic Quantum Systems
周期和准周期量子系统的谱论
- 批准号:
1758326 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Spectral Theory of Periodic and Quasiperiodic Quantum Systems
周期和准周期量子系统的谱论
- 批准号:
1600422 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
- 批准号:11875153
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: New Frontiers in Continuous-time Open Quantum Systems
职业:连续时间开放量子系统的新领域
- 批准号:
2238766 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Complexity of quantum many-body systems: learnability, approximations, and entanglement
职业:量子多体系统的复杂性:可学习性、近似和纠缠
- 批准号:
2238836 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Towards Low-Energy Tests of Quantum Gravity with AMO Systems
职业生涯:利用 AMO 系统进行量子引力的低能量测试
- 批准号:
2239498 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: The Research of Noise-Aware Scheduling for Noisy Intermediate-Scale Quantum Systems
职业:噪声中尺度量子系统的噪声感知调度研究
- 批准号:
2238734 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: New Regimes of Coherent Nonequilibrium Dynamics in Quantum Many-Body Systems
职业:量子多体系统中相干非平衡动力学的新机制
- 批准号:
2143635 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Taming Entanglement in Open Quantum Systems
职业:驯服开放量子系统中的纠缠
- 批准号:
2144910 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Universal Dynamics of Many-Body Quantum Systems Far from Equilibrium
职业:远离平衡的多体量子系统的通用动力学
- 批准号:
2142866 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Quantum Gas Microscopy of Frustrated Hubbard Systems
职业:受挫的哈伯德系统的量子气体显微镜
- 批准号:
2047275 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Entanglement Engineering in Dissipation-Driven Quantum Systems
职业:耗散驱动量子系统中的纠缠工程
- 批准号:
2047357 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: TUNING QUANTUM STATES OF MAGNETIC TOPOLOGICAL SYSTEMS WITH PRESSURE
职业:利用压力调节磁拓扑系统的量子态
- 批准号:
2045760 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant