CAREER: Transport Equations in Fluids and Biology: Singularity, Dynamics, and Mixing

职业:流体和生物学中的输运方程:奇点、动力学和混合

基本信息

  • 批准号:
    1846745
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2021-09-30
  • 项目状态:
    已结题

项目摘要

This project is devoted to a mathematical study of transport phenomena that are ubiquitous in nature. They relate to a transport of some substance, for example a pollutant or particulate material, by a flow, be it a fluid or gas flow or an intra-cellular flow. Mathematically, a certain scalar or vector field (e.g. density, vorticity, temperature) is carried by some velocity field. These phenomena can be described by partial differential equations (PDE), which often involve both nonlocal (dependence on the history of the flow or on the not necessarily close-by events) and nonlinear terms. Examples include the 2D Boussinesq equation that models large scale atmospheric and oceanic flows, and the diffusion-aggregation equation that models collective animal behavior. Due to the nonlocal and nonlinear nature of these equations, it is often unknown whether solutions exist globally in time or develop a finite-time singularity. Even in the cases where solutions are known to be global, their long-time behavior remains unclear for many equations. This project aims to develop novel analytical tools for a range of transport equations arising in fluid dynamics and biology, focusing on singularity, asymptotic, and mixing properties of the solutions. An integral part of the project is the educational component including developing advanced courses, supervising undergraduate research, and conducting a young researchers' workshop on nonlinear PDE. The workshop features mini-courses by established researchers and short talks by junior participants, aiming to introduce young researchers to the forefront of PDE research and facilitate collaborations. This project will advance the mathematical understanding of nonlocal PDE and their applications in fluids and biology. The project will also provide opportunities for education and training of junior researchers in this vibrant field.This project contains three different but related directions. The first direction is to obtain finite-time singularity formation for some fluid equations. The plan is to start with some one-dimensional model equations and prove finite-time singularity by establishing some kind of global control up to the blow-up time. The study of these model equations may shed new light on the full dynamics of fluid equations in higher dimensions. A second direction is the development of new tools for understanding the long-time dynamics of aggregation-diffusion equations, where the gradient flow structure plays an important role. A third direction is mixing by incompressible flows, and the goal is to study how fast the density can get mixed given some quantitative constraint of the velocity field.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目致力于对自然界中普遍存在的运输现象进行数学研究。它们涉及某些物质的运输,例如污染物或颗粒物质,通过流动,无论是流体、气体流动还是细胞内流动。在数学上,某一标量场或矢量场(如密度、涡度、温度)是由某一速度场承载的。这些现象可以用偏微分方程组(PDE)来描述,它通常包括非局部项(依赖于流动的历史或不一定依赖于附近的事件)和非线性项。例如,模拟大尺度大气和海洋流动的2D Boussinesq方程,以及模拟集体动物行为的扩散-聚集方程。由于这些方程的非局部性和非线性性质,通常不知道解是在时间上全局存在还是在有限时间内出现奇性。即使在已知解是全局的情况下,对于许多方程来说,它们的长期行为仍然不清楚。该项目旨在为流体力学和生物学中出现的一系列输运方程开发新的分析工具,重点研究解的奇性、渐近和混合性质。该项目的一个组成部分是教育部分,包括开发高级课程、指导本科生研究以及举办关于非线性PDE的年轻研究人员研讨会。工作坊的特色是由知名研究人员举办的小型课程和初级参与者的简短演讲,旨在向年轻研究人员介绍PDE研究的前沿并促进合作。该项目将促进对非局域偏微分方程及其在流体和生物学中的应用的数学理解。该项目还将在这个充满活力的领域为初级研究人员提供教育和培训的机会。该项目包含三个不同但相关的方向。第一个方向是获得某些流体方程的有限时间奇点形成。我们的计划是从一些一维模型方程开始,通过建立直到爆破时间的某种全局控制来证明有限时间奇性。对这些模型方程的研究可以为更高维度的流体方程的完整动力学提供新的线索。第二个方向是开发新的工具来理解聚集-扩散方程的长期动力学,其中梯度流结构起着重要作用。第三个方向是不可压缩流动的混合,目标是研究在速度场的一些定量约束下密度混合的速度有多快。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yao Yao其他文献

Ag-Doped PEDOT:PSS/CNT composites for thin-film all-solid-state supercapacitors with a stretchability of 480%
掺银%20PEDOT:%20PSS/CNT%20复合材料%20for%20薄膜%20全固态%20超级电容器%20with%20a%20可拉伸性%20of%20480%
  • DOI:
    10.1039/c7ta09154k
  • 发表时间:
    2018-01
  • 期刊:
  • 影响因子:
    11.9
  • 作者:
    Yaping Zhu;Ning Li;Tian Lv;Yao Yao;Huanan Peng;Jun Shi;Shaokui Cao;Tao Chen
  • 通讯作者:
    Tao Chen
Perceptions of built environment and health outcomes for older Chinese in Beijing: A big data approach with street view images and deep learning technique
北京老年人对建筑环境和健康结果的看法:采用街景图像和深度学习技术的大数据方法
  • DOI:
    10.1016/j.compenvurbsys.2019.101386
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ruoyu Wang;Ye Liu;Yi Lu;Jinbao Zhang;Penghua Liu;Yao Yao;George Grekousis
  • 通讯作者:
    George Grekousis
Generative adversarial network (GAN) enabled on-chip contact microscopy
支持生成对抗网络 (GAN) 的片上接触显微镜
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiongchao Chen;Hao Zhang;Tingting Zhu;Yao Yao;Di Jin;Peng Fei
  • 通讯作者:
    Peng Fei
Leakage Current Induced by Energetic Disorder in Organic Bulk Heterojunction Solar Cells: Comprehending the Ultrahigh Loss of Open-Circuit Voltage at Low Temperatures
有机体异质结太阳能电池中能量紊乱引起的漏电流:理解低温下开路电压的超高损耗
  • DOI:
    10.1103/physrevapplied.7.044017
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Yang Wenchao;Luo Yongsong;Guo Pengfei;Sun Haibin;Yao Yao
  • 通讯作者:
    Yao Yao
Urban greenery and mental wellbeing in adults: Cross-sectional mediation analyses on multiple pathways across different greenery measures
城市绿化和成人心理健康:不同绿化措施的多种途径的横断面中介分析
  • DOI:
    10.1016/j.envres.2019.108535
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    8.3
  • 作者:
    Ruoyu Wang;Marco Helbich;Yao Yao;Jinbao Zhang;Penghua Liu;Yuan Yuan;Ye Liu
  • 通讯作者:
    Ye Liu

Yao Yao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yao Yao', 18)}}的其他基金

Singularity and Asymptotics for Nonlocal Partial Differential Equations
非局部偏微分方程的奇异性和渐近性
  • 批准号:
    1715418
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Nonlocal PDE Models in Biology and Fluids
生物学和流体中的非局部偏微分方程模型
  • 批准号:
    1565480
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Nonlocal PDE Models in Biology and Fluids
生物学和流体中的非局部偏微分方程模型
  • 批准号:
    1411857
  • 财政年份:
    2014
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
Intraflagellar Transport运输纤毛蛋白的分子机理
  • 批准号:
    31371354
  • 批准年份:
    2013
  • 资助金额:
    90.0 万元
  • 项目类别:
    面上项目
苜蓿根瘤菌(S.meliloti)四碳二羧酸转运系统 (Dicarboxylate transport system, Dct系统)跨膜信号转导机理
  • 批准号:
    30870030
  • 批准年份:
    2008
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

Approximation of transport maps from local and non-local Monge-Ampere equations
根据局部和非局部 Monge-Ampere 方程近似输运图
  • 批准号:
    2308856
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Parabolic Monge-Ampère Equations, Computational Optimal Transport, and Geometric Optics
合作研究:抛物线 Monge-AmpeÌre 方程、计算最优传输和几何光学
  • 批准号:
    2246606
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Parabolic Monge-Ampère Equations, Computational Optimal Transport, and Geometric Optics
合作研究:抛物线 Monge-AmpeÌre 方程、计算最优传输和几何光学
  • 批准号:
    2246611
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Integro-differential and Transport Problems in Partial Differential Equations
职业:偏微分方程中的积分微分和输运问题
  • 批准号:
    2144232
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Nonlocal Transport Equations in Fluids, Swarming, and Traffic Flows
流体、蜂群和交通流中的非局域传输方程
  • 批准号:
    2108264
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
HCC: Small: Neural Network-based Solvers for Integral Equations in Light Transport
HCC:小型:基于神经网络的光传输积分方程求解器
  • 批准号:
    2126407
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Study of non-similarity in multiphase turbulent transport on the basis of unified averaging equations
基于统一平均方程的多相湍流输运非相似性研究
  • 批准号:
    19H02066
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Filtering Strategies for Radiation Transport Equations
辐射传输方程的过滤策略
  • 批准号:
    1913277
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Transport Equations, Mixing, and Fluid dynamics
传输方程、混合和流体动力学
  • 批准号:
    432402380
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grants
An Entropic Approach to Partial Differential Equations and Optimal Transport
偏微分方程和最优输运的熵方法
  • 批准号:
    542890-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了