Nonlocal Transport Equations in Fluids, Swarming, and Traffic Flows

流体、蜂群和交通流中的非局域传输方程

基本信息

  • 批准号:
    2108264
  • 负责人:
  • 金额:
    $ 18.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Nonlocal models are relevant to many real-world phenomena and have been an area of active and growing research in recent decades. The development of a mathematical theory of nonlocal interactions plays a significant role in the understanding of complex structures, with rich applications in physics, biology, and social sciences. One example of the effects of nonlocal behavior found in nature is the collective dynamics in animal swarms, where small-scale interactions emerge into intriguing global phenomena. This project develops novel and robust analytical techniques for models that share similar nonlocality. These tools help to advance the understanding of the hidden structures of the models, and ultimately have an impact in applications, such as in traffic flow, where they can be used to study how to integrate nonlocal communications into a smart traffic network to improve efficiency and avoid traffic congestions. The training and professional development of graduate students is an integral part of the project. The project studies three families of nonlocal transport equations. The first family includes the Euler-alignment system describing the flocking phenomenon for animal swarms. The goal is to establish a global well-posedness theory for the system in multi-dimensions, starting from imposing radial symmetry, and to apply the methodology to other models, such as the Euler-Poisson equations and more. The second includes a nonlocal transport equation which describes the evolution of the distribution of polynomial roots under repeated differentiation, the aim is to find a rigorous connection between this equation and the differentiation process. The last is a family of nonlocal traffic flow models, which have received extensive attention in the last decade, and are analyzed to understand the impact of the nonlocal interactions and how the nonlocal phenomenon can help to prevent traffic congestions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非局部模型与许多真实世界现象相关,近几十年来一直是一个活跃且不断增长的研究领域。非局域相互作用数学理论的发展在理解复杂结构方面发挥着重要作用,在物理学、生物学和社会科学中有着广泛的应用。自然界中发现的非局部行为的影响的一个例子是动物群体的集体动态,其中小规模的相互作用变成了有趣的全球现象。该项目为共享相似非局部性的模型开发了新颖和健壮的分析技术。这些工具有助于促进对模型隐藏结构的理解,并最终对应用程序产生影响,例如在交通流中,它们可用于研究如何将非本地通信集成到智能交通网络中,以提高效率并避免交通拥堵。研究生的培训和专业发展是该项目不可分割的一部分。该项目研究了三类非局部输运方程。第一个家族包括欧拉排列系统,该系统描述了动物群体的集群现象。目标是从施加径向对称性开始,建立多维系统的全局适定性理论,并将该方法应用于其他模型,如Euler-Poisson方程等。第二种方法包括一个描述多项式根的分布在重复微分下的演化的非局部迁移方程,目的是找到该方程与微分过程之间的严格联系。最后是一系列非本地交通流模型,这些模型在过去十年中受到了广泛的关注,并被分析以了解非本地相互作用的影响以及非本地现象如何有助于防止交通拥堵。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Critical Threshold for Global Regularity of the Euler--Monge--Ampère System with Radial Symmetry
径向对称欧拉-蒙日-安培系统全局正则性的临界阈值
Sharp critical thresholds for a class of nonlocal traffic flow models
一类非本地交通流模型的尖锐临界阈值
A sharp critical threshold for a traffic flow model with look-ahead dynamics
Global Regularity for a Nonlocal PDE Describing Evolution of Polynomial Roots Under Differentiation
描述微分下多项式根演化的非局部偏微分方程的全局正则性
Accelerated kinetic Monte Carlo methods for general nonlocal traffic flow models
一般非局部交通流模型的加速动力学蒙特卡罗方法
  • DOI:
    10.1016/j.physd.2023.133657
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sun, Yi;Tan, Changhui
  • 通讯作者:
    Tan, Changhui
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Changhui Tan其他文献

First-order aggregation models with alignment
具有对齐功能的一阶聚合模型
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Fetecau;Weiran Sun;Changhui Tan
  • 通讯作者:
    Changhui Tan
Hierarchical Construction of Bounded Solutions of div U=F in Critical Regularity Spaces
临界正则空间中div U=F有界解的层次构造
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Tadmor;Changhui Tan
  • 通讯作者:
    Changhui Tan
On the global classical solution to compressible Euler system with singular velocity alignment
奇异速度对准的可压缩欧拉系统的全局经典解
  • DOI:
    10.4310/maa.2021.v28.n2.a3
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    0.3
  • 作者:
    Li Chen;Changhui Tan;Lining Tong
  • 通讯作者:
    Lining Tong
Singularity formation for a fluid mechanics model with nonlocal velocity
An Exact Rescaling Velocity Method for some Kinetic Flocking Models
一些动力学植绒模型的精确重缩放速度方法
  • DOI:
    10.1137/140993430
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thomas Rey;Changhui Tan
  • 通讯作者:
    Changhui Tan

Changhui Tan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Changhui Tan', 18)}}的其他基金

CAREER: Nonlocal partial differential equations in collective dynamics and fluid flow
职业:集体动力学和流体流动中的非局部偏微分方程
  • 批准号:
    2238219
  • 财政年份:
    2023
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Continuing Grant
Regularity and Singularity Formation in Swarming and Related Fluid Models
集群及相关流体模型中的规律性和奇异性形成
  • 批准号:
    1853001
  • 财政年份:
    2018
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Continuing Grant
Regularity and Singularity Formation in Swarming and Related Fluid Models
集群及相关流体模型中的规律性和奇异性形成
  • 批准号:
    1815667
  • 财政年份:
    2018
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Continuing Grant

相似国自然基金

Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
Intraflagellar Transport运输纤毛蛋白的分子机理
  • 批准号:
    31371354
  • 批准年份:
    2013
  • 资助金额:
    90.0 万元
  • 项目类别:
    面上项目
苜蓿根瘤菌(S.meliloti)四碳二羧酸转运系统 (Dicarboxylate transport system, Dct系统)跨膜信号转导机理
  • 批准号:
    30870030
  • 批准年份:
    2008
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

Approximation of transport maps from local and non-local Monge-Ampere equations
根据局部和非局部 Monge-Ampere 方程近似输运图
  • 批准号:
    2308856
  • 财政年份:
    2023
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Standard Grant
Collaborative Research: Parabolic Monge-Ampère Equations, Computational Optimal Transport, and Geometric Optics
合作研究:抛物线 Monge-AmpeÌre 方程、计算最优传输和几何光学
  • 批准号:
    2246606
  • 财政年份:
    2023
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Standard Grant
Collaborative Research: Parabolic Monge-Ampère Equations, Computational Optimal Transport, and Geometric Optics
合作研究:抛物线 Monge-AmpeÌre 方程、计算最优传输和几何光学
  • 批准号:
    2246611
  • 财政年份:
    2023
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Standard Grant
CAREER: Integro-differential and Transport Problems in Partial Differential Equations
职业:偏微分方程中的积分微分和输运问题
  • 批准号:
    2144232
  • 财政年份:
    2022
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Continuing Grant
HCC: Small: Neural Network-based Solvers for Integral Equations in Light Transport
HCC:小型:基于神经网络的光传输积分方程求解器
  • 批准号:
    2126407
  • 财政年份:
    2021
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Standard Grant
Study of non-similarity in multiphase turbulent transport on the basis of unified averaging equations
基于统一平均方程的多相湍流输运非相似性研究
  • 批准号:
    19H02066
  • 财政年份:
    2019
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Transport Equations in Fluids and Biology: Singularity, Dynamics, and Mixing
职业:流体和生物学中的输运方程:奇点、动力学和混合
  • 批准号:
    1846745
  • 财政年份:
    2019
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Continuing Grant
Filtering Strategies for Radiation Transport Equations
辐射传输方程的过滤策略
  • 批准号:
    1913277
  • 财政年份:
    2019
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Standard Grant
Transport Equations, Mixing, and Fluid dynamics
传输方程、混合和流体动力学
  • 批准号:
    432402380
  • 财政年份:
    2019
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Research Grants
An Entropic Approach to Partial Differential Equations and Optimal Transport
偏微分方程和最优输运的熵方法
  • 批准号:
    542890-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了