CAREER: Understanding disorder, defects, and dielectric properties of entropy-stabilized oxides

职业:了解熵稳定氧化物的无序、缺陷和介电特性

基本信息

项目摘要

NON-TECHNICAL DESCRIPTION: The discovery and development of new materials underlies technological revolutions in microelectronics. Recently, a new materials field has emerged that harnesses large chemical and structural disorder to its advantage. This project will use atomic-scale engineering of structural and chemical disorder to discover and understand these new materials to achieve unprecedented functionalities. This project aims to leverage state-of-the-art film deposition with in-situ structural characterization and atomic-to-micron scale imaging techniques to understand the stabilization of structurally and chemically disordered multicomponent oxides, their complex structure, and the ways disorder induces novel physical properties. The results of this research are anticipated to provide new insights toward realizing new oxide materials and disorder-property relationships. Students in this project are receiving professional training in materials synthesis and the measurement of structural and dielectric properties of materials. Upon graduation, students are qualified for employment in academia and industrial fields - especially those related to microelectronics. This research is integrated with educational activities to engage pre-college students and establish a new pedagogy for physical science classes taught at the high school level. Curriculum components are being developed to introduce scientific practices and atomic-to-macroscopic scale thinking into the high-school classroom using the dielectric properties and applications of ceramics. The effort is bringing teachers together to receive training to integrate these new components into their teaching. The impact and merit of these activities is being assessed using biannual surveys and in-person interviews. TECHNICAL DETAILS: Functionalizing defects and disorder can unlock unprecedented properties in ceramics. To facilitate this functionality, this project seeks to comprehensively understand, characterize, control, and predict disorder across length scales. In oxides, the magnetic and electronic properties are strongly correlated to their stereochemistry and electronic structure. The introduction of disorder, chemically or structurally, can lead to symmetry breaking, doping, and frustrated bond and electronic configurations that have been associated with emergent and colossal physical properties. The discovery of multicomponent oxides stabilized by a large configurational disorder, so called entropy-stabilized oxides, creates a unique state of matter where enhanced functional properties stemming from the inherent chemical and structural disorder can be realized. This project aims to: 1) utilize real-time characterization to resolve adatom relaxation and evolution of crystal structure during deposition to understand mechanisms of entropy stabilization in oxide thin films, 2) probe disorder, defects, and charge and compositional non-uniformities from atomic- to macro-scale using transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and dielectric spectroscopy, and 3) understand the microstructural mechanisms that give rise to the anomalous strain relaxation, large structural changes, and colossal dielectric properties of entropy-stabilized oxides. It is anticipated that results will elucidate new scientific understanding of the thermodynamic and kinetic factors that drive stabilization, evolution and disorder of the microstructure, defect formation, and their consequences on dielectric properties.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:新材料的发现和开发是微电子技术革命的基础。最近,出现了一个新材料领域,它利用大量的化学和结构无序来发挥其优势。该项目将利用结构和化学无序的原子级工程来发现和理解这些新材料,以实现前所未有的功能。该项目旨在利用最先进的薄膜沉积与原位结构表征和原子到微米尺度的成像技术来了解结构和化学无序多组分氧化物的稳定性、它们的复杂结构以及无序引发新物理性质的方式。这项研究的结果预计将为实现新的氧化物材料和无序性质关系提供新的见解。该项目的学生正在接受材料合成以及材料结构和介电性能测量方面的专业培训。毕业后,学生有资格在学术界和工业领域就业,特别是与微电子相关的领域。这项研究与教育活动相结合,吸引了大学预科学生,并为高中阶段的物理科学课程建立了新的教学法。正在开发课程组件,利用陶瓷的介电特性和应用,将科学实践和原子到宏观尺度的思维引入高中课堂。我们正在努力将教师聚集在一起接受培训,以便将这些新内容融入到他们的教学中。正在通过每两年一次的调查和面对面访谈来评估这些活动的影响和优点。技术细节:功能化缺陷和无序可以释放陶瓷前所未有的性能。为了促进这一功能,该项目寻求全面理解、表征、控制和预测跨长度尺度的无序。在氧化物中,磁性和电子性质与其立体化学和电子结构密切相关。化学或结构上无序的引入可能导致对称性破坏、掺杂以及与新兴和巨大物理性质相关的受挫键和电子构型。通过大的构型无序稳定的多组分氧化物(所谓的熵稳定氧化物)的发现创造了一种独特的物质状态,在这种状态下,可以实现由于固有的化学和结构无序而增强的功能特性。该项目的目标是:1) 利用实时表征来解决沉积过程中吸附原子弛豫和晶体结构的演变,以了解氧化物薄膜中熵稳定的机制,2) 使用透射电子显微镜、X 射线光电子能谱、X 射线衍射和电介质从原子到宏观尺度探测无序、缺陷以及电荷和成分不均匀性。 光谱学,3)了解引起异常应变松弛、大的结构变化和熵稳定氧化物的巨大介电性能的微观结构机制。预计研究结果将阐明对热力学和动力学因素的新科学理解,这些因素驱动微结构的稳定、演变和无序、缺陷形成及其对介电性能的影响。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Magnetic frustration control through tunable stereochemically driven disorder in entropy-stabilized oxides
  • DOI:
    10.1103/physrevmaterials.3.104420
  • 发表时间:
    2019-10-28
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Meisenheimer, Peter B.;Williams, Logan D.;Heron, John T.
  • 通讯作者:
    Heron, John T.
Property and cation valence engineering in entropy-stabilized oxide thin films
  • DOI:
    10.1103/physrevmaterials.4.100401
  • 发表时间:
    2020-10-19
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Kotsonis, George N.;Meisenheimer, Peter B.;Maria, Jon-Paul
  • 通讯作者:
    Maria, Jon-Paul
Oxides and the high entropy regime: A new mix for engineering physical properties
  • DOI:
    10.1557/adv.2020.295
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    P. Meisenheimer;J. Heron
  • 通讯作者:
    P. Meisenheimer;J. Heron
Effects of local compositional and structural disorder on vacancy formation in entropy-stabilized oxides from first-principles
根据第一原理,局部成分和结构无序对熵稳定氧化物中空位形成的影响
  • DOI:
    10.1038/s41524-022-00780-0
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    Chae, Sieun;Williams, Logan;Lee, Jihang;Heron, John T.;Kioupakis, Emmanouil
  • 通讯作者:
    Kioupakis, Emmanouil
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Heron其他文献

Zur Chemie der Stärke
  • DOI:
    10.1007/bf01340959
  • 发表时间:
    1880-12-01
  • 期刊:
  • 影响因子:
    3.800
  • 作者:
    M. C. O'Sullivan;Horace T. Brown;John Heron
  • 通讯作者:
    John Heron
Set-theoretic justification and the theoretical virtues
  • DOI:
    10.1007/s11229-020-02784-z
  • 发表时间:
    2020-07-14
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    John Heron
  • 通讯作者:
    John Heron
Co-Operative Inquiry: Research into the Human Condition
  • DOI:
  • 发表时间:
    1996-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    John Heron
  • 通讯作者:
    John Heron

John Heron的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Understanding how exocrine-derived signals promote beta cell growth
了解外分泌信号如何促进 β 细胞生长
  • 批准号:
    10750765
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
A Paradigm Shift in Health Behavior Change: Understanding When and How Social Comparison Supports Healthy Behavior
健康行为改变的范式转变:了解社会比较何时以及如何支持健康行为
  • 批准号:
    10685733
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Addressing sleep health disparities from within: A community-engaged study to understanding sleep and cardiometabolic disease risk among women of color
从内部解决睡眠健康差异:一项社区参与的研究,旨在了解有色人种女性的睡眠和心脏代谢疾病风险
  • 批准号:
    10815470
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Understanding Lrig1+ in vocal fold epithelium and organoid biology
了解声带上皮和类器官生物学中的 Lrig1
  • 批准号:
    10732733
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Understanding the molecular mechanisms of cilia formation
了解纤毛形成的分子机制
  • 批准号:
    10713810
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Kipiyecipakiciipe "coming home": Establishing clinical cultural neuroscience as a tool for understanding the role of traditional cultural engagement in mitigating substance misuse and disorder
Kipiyecipakiciipe“回家”:建立临床文化神经科学作为理解传统文化参与在减轻药物滥用和疾病中的作用的工具
  • 批准号:
    10740237
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Understanding Genetic Complexity in Spina Bifida
了解脊柱裂的遗传复杂性
  • 批准号:
    10750235
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Understanding the immune response changes to clinical interventions for Epstein-Barr virus infection prior to lymphoma development in children after organ transplants (UNEARTH)
了解器官移植后儿童淋巴瘤发展之前针对 Epstein-Barr 病毒感染的临床干预的免疫反应变化(UNEARTH)
  • 批准号:
    10755205
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Understanding the relationship between cannabis use and attention-deficit/hyperactivity disorder
了解大麻使用与注意力缺陷/多动症之间的关系
  • 批准号:
    2874883
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Studentship
Understanding Foxp2-Mediated Molecular Signaling in Fear Learning
了解恐惧学习中 Foxp2 介导的分子信号传导
  • 批准号:
    10662864
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了