CAREER: Elucidating Fundamental Structure-Property Relationships in Ionomer Nanomcomposites for Redox Flow Batteries

职业:阐明氧化还原液流电池离聚物纳米复合材料的基本结构-性能关系

基本信息

  • 批准号:
    1848347
  • 负责人:
  • 金额:
    $ 56.64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

NON-TECHNICAL SUMMARYThe research goal of this CAREER award is to develop novel nanocomposite materials with functionality that can overcome practical hurdles for large-scale energy storage technologies such as the redox flow battery. Inadequate ion selectivity in existing charged polymers utilized in redox flow batteries has motivated the incorporation of nanoparticles, a versatile approach for tuning a wide range of properties of polymers. However, the molecular-scale heterogeneity in these materials has confused structure-property relationships needed for the development of viable nanocomposite materials for flow batteries. To address this gap, the research component of this CAREER award focuses on advancing our understanding of fundamental polymer physics governing interactions between functionalized nanoparticles and charged polymers, and how these in turn alter resultant polymer architectures and bulk functional properties that are relevant for selective ion exchange. The design and synthesis of novel soft composite materials will be guided by these fundamental structure-property relationships to yield desirable molecular-scale interactions, thus enabling their functionality for energy storage applications. These findings and materials also have the potential to impact other critical modern technologies that utilize functional polymer membranes, such as water purification and energy delivery. These research efforts are closely tied to educational initiatives that aim to engage and inspire the next generation of engineers and scientists. Undergraduate and graduate students contributing to this project will be exposed to advanced materials synthesis and characterization techniques, equipping them with the interdisciplinary skills needed to address tomorrow's engineering challenges. Together with chemical engineering students at Clemson University, this award will develop and implement a STEM-based afterschool program, for students grades 6-8, that emphasizes scientific problem solving through the application of polymer science concepts to tackle hands-on tasks inspired by real-world challenges. Together with the research component, these educational and outreach programs seek to foster an inclusive approach to addressing STEM challenges that improves national technical and economic competencies, as well as helps to build a diverse, competitive, and innovative future workforce.TECHNICAL SUMMARYThe design of next-generation ionomer nanocomposites for redox flow batteries, a scalable energy storage technology, is hindered by an inadequate understanding of the underlying polymer physics governing ion transport in these charged materials. The complex morphology of existing materials exacerbates this by further confusing fundamental structure-property relationships, resulting in, to date, only marginal improvements in membrane performance. The research goal of this CAREER award is centered on addressing this fundamental knowledge gap by interrogating how polymer network structure and segmental dynamics impact technology-relevant performance properties of ionomer nanocomposites. This will be achieved by systematically varying the molecular weight, monomer architecture, and degree of sulfonation of a series of novel ion-conducting aromatic polymer composites (e.g., sulfonated poly(aryl ether ketone)s) containing functionalized nanoparticles. By tuning the molecular-level properties of the membrane, as well as the characteristics of the nanoparticles (e.g., surface functionalization, size, and loading), the role of morphology on membrane dynamics and ion transport can be elucidated. Segmental dynamics (localized motions and chain dynamics) of the hydrated composite membranes will be interrogated using both neutron spin echo and dielectric spectroscopy, where the latter experimental technique will also be used to characterize the motion of charge carriers, that is, water-mediated ion transport. In addition, 'bulk-scale' dynamics of the hydrated membranes will be captured using infrared spectroscopy and compared to the local membrane dynamics. These powerful, noninvasive spectroscopic techniques can be used to interrogate membrane dynamics over a wide range of length and time scales, providing insight into the impact of nanoparticle characteristics on the collective membrane segmental dynamics and ion diffusion. Performing such studies is critical to establishing comprehensive, fundamental relationships between nanoscale features of the ionomer nanocomposites and device-relevant performance properties. Poroelastic relaxation indentation will be employed to characterize the mechanical properties and the dynamics of solvent migration of the hydrated nanocomposite membranes, as these directly impact water-mediated ion transport in these materials. As the use of advanced functional polymers in membrane-based technologies continues to grow, the fundamental knowledge gained from this research has the potential to impact the design of new materials in areas such as water purification and energy storage and delivery. The research component of this CAREER award is closely integrated with educational initiatives that seek to improve diversity and inclusivity for STEM in the upstate South Carolina area through teaching, undergraduate research, outreach, and the implementation of a STEM-based afterschool program at a local middle school.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结这一职业奖项的研究目标是开发新型纳米复合材料,其功能可以克服大规模能量存储技术(如氧化还原液流电池)的实用障碍。氧化还原液流电池中使用的现有带电聚合物的离子选择性不足,促使纳米颗粒的加入,这是一种调节聚合物广泛性能的通用方法。然而,这些材料在分子尺度上的异质性混淆了开发用于液流电池的可行纳米复合材料所需的结构-性能关系。为了弥补这一差距,该职业奖的研究部分侧重于促进我们对管理功能化纳米粒子和带电聚合物之间的相互作用的基础聚合物物理的理解,以及这些相互作用如何反过来改变与选择性离子交换相关的所得聚合物体系结构和主体功能性质。新型软复合材料的设计和合成将以这些基本的结构-性质关系为指导,以产生理想的分子尺度相互作用,从而使其能够用于储能应用。这些发现和材料也有可能影响其他利用功能聚合物膜的关键现代技术,如水净化和能量输送。这些研究工作与旨在吸引和激励下一代工程师和科学家的教育倡议密切相关。为该项目做出贡献的本科生和研究生将接触到先进的材料合成和表征技术,使他们具备应对未来工程挑战所需的跨学科技能。该奖项将与克莱姆森大学的化学工程学生一起,为6-8年级的学生开发和实施一个以STEM为基础的课后计划,强调通过应用聚合物科学概念来解决科学问题,以解决受现实世界挑战启发的动手任务。与研究部分一起,这些教育和推广计划寻求培养一种包容性的方法来应对STEM挑战,以提高国家的技术和经济能力,并帮助建立一支多样化、有竞争力和创新的未来劳动力队伍。技术总结氧化还原液流电池的下一代离聚体纳米复合材料是一种可扩展的储能技术,由于对这些带电材料中离子传输的基础聚合物物理了解不足,设计受到阻碍。现有材料的复杂形态进一步混淆了基本的结构-性质关系,从而加剧了这一点,导致迄今为止,膜性能只有轻微的改善。该职业奖的研究目标集中在通过询问聚合物网络结构和链段动力学如何影响离聚体纳米复合材料的相关性能来解决这一基本知识差距。这将通过系统地改变一系列含有功能化纳米颗粒的新型离子导电芳香聚合物复合材料(如磺化聚芳醚酮)的相对分子质量、单体结构和磺化度来实现。通过调节膜的分子水平的性质,以及纳米颗粒的特性(例如,表面功能化、尺寸和负载),可以阐明形态对膜动力学和离子传输的作用。水合复合膜的链段动力学(局域运动和链动力学)将同时使用中子自旋回波和介电光谱来研究,其中后者的实验技术也将被用于表征载流子的运动,即水介导的离子传输。此外,还将使用红外光谱捕获水化膜的“大尺度”动力学,并与局部膜动力学进行比较。这些强大的非侵入性光谱技术可用于在广泛的长度和时间范围内询问膜动力学,从而深入了解纳米颗粒特性对集体膜分段动力学和离子扩散的影响。进行这样的研究对于在离聚体纳米复合材料的纳米尺度特征和与设备相关的性能特性之间建立全面、基本的关系至关重要。水合纳米复合膜的力学性能和溶剂迁移动力学将被用孔弹性松弛压痕来表征,因为这直接影响到水在这些材料中的离子传输。随着先进的功能聚合物在基于膜的技术中的使用持续增长,从这项研究中获得的基础知识有可能影响水净化和能量存储和输送等领域的新材料的设计。该职业奖项的研究部分与教育倡议紧密结合在一起,这些倡议寻求通过教学、本科生研究、外展和在当地中学实施基于STEM的课后计划来提高STEM在南卡罗来纳州北部地区的多样性和包容性。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Role of nanoparticle size and surface chemistry on ion transport and nanostructure of perfluorosulfonic acid ionomer nanocomposites
  • DOI:
    10.1039/d1sm01573g
  • 发表时间:
    2022-03-07
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Domhoff, Allison;Wang, Xueting;Davis, Eric M.
  • 通讯作者:
    Davis, Eric M.
Leveraging Nanoparticle Dispersion State To Tune Vanadium Ion Selectivity of Nanophase-Segregated Ionomer Nanocomposites for Redox Flow Batteries
  • DOI:
    10.1021/acsaem.9b01443
  • 发表时间:
    2019-12-01
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Domhoff, Allison;Balwani, Apoorv;Davis, Eric M.
  • 通讯作者:
    Davis, Eric M.
Enhanced Proton Selectivity in Ionomer Nanocomposites Containing Hydrophobically Functionalized Silica Nanoparticles
含有疏水功能化二氧化硅纳米粒子的离聚物纳米复合材料中质子选择性增强
  • DOI:
    10.1021/acs.macromol.0c01696
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Domhoff, Allison;Martin, Tyler B.;Silva, Mayura S.;Saberi, Mansour;Creager, Stephen;Davis, Eric M.
  • 通讯作者:
    Davis, Eric M.
Influence of casting substrate on bulk morphology and vanadium ion transport in ionomer nanocomposites
  • DOI:
    10.1063/1.5144204
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Allison Domhoff;E. Davis
  • 通讯作者:
    Allison Domhoff;E. Davis
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eric Davis其他文献

Jupiter Observing Velocity Experiment (JOVE): Introduction to Wind Rider Solar Electric Propulsion Demonstrator and Science Objectives
木星观测速度实验 (JOVE):Wind Rider 太阳能电力推进演示器简介和科学目标
  • DOI:
    10.1088/1538-3873/ac4812
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    B. Freeze;Jeff Greason;Ronnie Nader;Jaime Jaramillo Febres;Adolfo Chaves;Michel Lamontagne;S. Thomas;J. Cassibry;J. Fuller;Eric Davis;D. Conway
  • 通讯作者:
    D. Conway
Invasion of the Botnet Snatchers: A Case Study in Applied Malware Cyberdeception
僵尸网络抢夺者的入侵:应用恶意软件网络欺骗的案例研究
  • DOI:
    10.24251/hicss.2020.229
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jared Chandler;Kathleen Fisher;Erin Chapman;Eric Davis;Adam Wick
  • 通讯作者:
    Adam Wick
Interpretation of CO2 Sequestration-Induced Surface Deformation over KB-502 at Krechba, Algeria
  • DOI:
    10.2118/147444-ms
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eric Davis
  • 通讯作者:
    Eric Davis
P14-009-23 Impact of Dinner Meat Sources on Changes in Cardiovascular Disease Risk Factors With a Mediterranean Diet: Secondary Analysis From a Randomized Controlled Trial
  • DOI:
    10.1016/j.cdnut.2023.100623
  • 发表时间:
    2023-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Wayne Campbell;Eric Davis;Robert Bergia;Austin Hartman;Rikard Landberg;Gabriele Riccardi
  • 通讯作者:
    Gabriele Riccardi
B-Cell Receptor Signaling Modulates Cholesterol Biosynthesis in Diffuse Large B-Cell Lymphoma
  • DOI:
    10.1182/blood-2022-158043
  • 发表时间:
    2022-11-15
  • 期刊:
  • 影响因子:
  • 作者:
    Nitin Agarwal;Akanksha Aradhya;Mario L. Marques-Piubelli;Luisa M Solis Soto;Daniel Bilbao;Ralf Landgraf;Vida Ravanmehr;Jared Henderson;Michael R. Green;Eric Davis;Francisco Vega
  • 通讯作者:
    Francisco Vega

Eric Davis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eric Davis', 18)}}的其他基金

RUI: Development of Next-Generation Drift-Time Ion Mobility Spectrometry through the Application of Pulsed Ionization and Voltage Sweep Methodologies
RUI:通过应用脉冲电离和电压扫描方法开发下一代漂移时间离子淌度光谱法
  • 批准号:
    2203666
  • 财政年份:
    2022
  • 资助金额:
    $ 56.64万
  • 项目类别:
    Standard Grant
Uncovering Fundamental Transport Principles in Novel, Ultraclean Lignin-Based Hydrogels for Bioseparations
揭示用于生物分离的新型超净木质素水凝胶的基本传输原理
  • 批准号:
    1915787
  • 财政年份:
    2019
  • 资助金额:
    $ 56.64万
  • 项目类别:
    Continuing Grant
DMREF: Collaborative Research: An integrated multiscale modeling and experimental approach to design fouling-resistant membranes
DMREF:协作研究:设计防污膜的集成多尺度建模和实验方法
  • 批准号:
    1534304
  • 财政年份:
    2016
  • 资助金额:
    $ 56.64万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Ion Mobility Spectrometry Radiative Ion-Ion Neutralization for gas-phase ion transduction
合作研究:RUI:用于气相离子转导的离子淌度谱辐射离子-离子中和
  • 批准号:
    1507155
  • 财政年份:
    2015
  • 资助金额:
    $ 56.64万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Elucidating the fundamental mechanisms of stress corrosion cracking from smooth tensile specimens under constant load for quantitative life-prediction
职业:阐明恒定载荷下光滑拉伸样品应力腐蚀开裂的基本机制,以进行定量寿命预测
  • 批准号:
    2339696
  • 财政年份:
    2024
  • 资助金额:
    $ 56.64万
  • 项目类别:
    Continuing Grant
Elucidating the fundamental nature of hadrons with Particle Identification Detector
用粒子识别探测器阐明强子的基本性质
  • 批准号:
    ST/W005433/1
  • 财政年份:
    2022
  • 资助金额:
    $ 56.64万
  • 项目类别:
    Research Grant
Elucidating the fundamental mechanism of platelet biogenesis and its medical application
阐明血小板生物发生的基本机制及其医学应用
  • 批准号:
    21H05047
  • 财政年份:
    2021
  • 资助金额:
    $ 56.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Elucidating Fundamental Factors Driving Self-assembly with Guided Interactions in Multicomponent Enzyme Systems Using Model Nanostructured Platforms
使用模型纳米结构平台阐明多组分酶系统中通过引导相互作用驱动自组装的基本因素
  • 批准号:
    2108448
  • 财政年份:
    2021
  • 资助金额:
    $ 56.64万
  • 项目类别:
    Standard Grant
Elucidating Fundamental Principles of Dermal Pharmacokinetics via Microdialysis
通过微透析阐明皮肤药代动力学的基本原理
  • 批准号:
    10116058
  • 财政年份:
    2020
  • 资助金额:
    $ 56.64万
  • 项目类别:
Elucidating the Fundamental Properties of the Nucleon with Dispersive Techniques
用色散技术阐明核子的基本性质
  • 批准号:
    2013184
  • 财政年份:
    2020
  • 资助金额:
    $ 56.64万
  • 项目类别:
    Continuing Grant
Elucidating Fundamental Principles of Dermal Pharmacokinetics via Microdialysis
通过微透析阐明皮肤药代动力学的基本原理
  • 批准号:
    10202604
  • 财政年份:
    2020
  • 资助金额:
    $ 56.64万
  • 项目类别:
Fundamental research for elucidating the mechanism of extermination of the invasive alien species Argentine ants
阐明外来入侵物种阿根廷蚁灭绝机制的基础研究
  • 批准号:
    19K06098
  • 财政年份:
    2019
  • 资助金额:
    $ 56.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Fundamental research for elucidating mechanism of the mechanism of root formation damage caused by irradiation
阐明辐照根系形成损伤机制的基础研究
  • 批准号:
    15K11089
  • 财政年份:
    2015
  • 资助金额:
    $ 56.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Elucidating the Fundamental Biology of Memory Regulatory T cells in Skin
阐明皮肤记忆调节 T 细胞的基本生物学
  • 批准号:
    8898017
  • 财政年份:
    2014
  • 资助金额:
    $ 56.64万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了