I-Corps: Data Quality Assurance and Inventory Tool (One-Voice) for Sewer Inspection Data
I-Corps:下水道检查数据的数据质量保证和库存工具(单语音)
基本信息
- 批准号:1849023
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-10-01 至 2020-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact/commercial potential of this I-Corps project is the ability to provide an easily accessible and reliable national sewer data inventory that will assist municipal utility districts in developing effective and proactive maintenance and rehabilitation plans, hence reducing the overall maintenance costs of sewer systems as well as avoiding costly repairs due to pipe failures. Moreover, if the technology is successfully commercialized, sewer officials such as National Association of Sewer Service Companies (NASSCO) will better understand the current and trend of sewer systems condition nation-wide; as such, they will have proven justification to secure adequate federal funding for sewer system improvements. This technology will support the nation's agenda of improving the condition of the aging and deteriorating sewer infrastructure, which will promote societal wellbeing and support the sustainable development of the society. In addition, it has been expected that the availability of national sewer inventory will help the industry to find new uses of sewer data and new collaborations. The participation in the NSF I-Corps program affords graduate students a great opportunity to cultivate their skills in innovation and entrepreneurship, which may lead to the creation of start-up companies and more job opportunities.This I-Corps project addresses common concerns -- data availability and data quality -- raised by sewer industry stakeholders. Understanding the current condition and deterioration mechanism of sewer pipe networks is a critical step in improving national wastewater systems, which requires easily accessible and reliable data. Although sewer inspection data have been collected by various utility districts across the country for many years, the data is not in a usable and uniform format for asset management purposes. This technology provides a visual tool to evaluate and report data quality issues and an innovative algorithm to resolve these issues. The preliminary results show that, by applying the proposed quality assurance algorithm to six datasets obtained by the team, the percentage of good quality inspection data increased from 50%-75% (pre-process) to 95% (post-process). More importantly, the proposed technology includes a comprehensive, uniform, and quality-assured national sewer inventory that documents the historical and current conditions of sewer pipelines. Through the regional NSF I-Corps site program, it was concluded that there is a tremendous need for the proposed technology among utilities and contractors because of the time and cost savings that can be realized in inspection processes and rehabilitation plans.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
I-Corps项目更广泛的影响/商业潜力是能够提供易于获取和可靠的全国下水道数据清单,这将有助于市政公用事业区制定有效和主动的维护和修复计划,从而降低下水道系统的总体维护成本,并避免因管道故障而导致的昂贵维修。此外,如果这项技术成功商业化,全国下水道服务公司协会(NASSCO)等下水道官员将更好地了解全国下水道系统状况的现状和趋势;因此,他们将有理由获得足够的联邦资金来改善下水道系统。这项技术将支持国家改善老化和恶化的下水道基础设施状况的议程,这将促进社会福祉并支持社会的可持续发展。此外,预计国家下水道清单的可用性将有助于该行业找到下水道数据的新用途和新的合作。参与NSF I-Corps项目为研究生提供了一个培养创新和创业技能的绝佳机会,这可能会导致创业公司的创建和更多的就业机会。I-Corps项目解决了下水道行业利益相关者提出的常见问题——数据可用性和数据质量。了解污水管网的现状和恶化机制是改善国家污水系统的关键一步,这需要易于获取和可靠的数据。尽管全国各地的公用事业区已经收集了多年的下水道检查数据,但这些数据并不是用于资产管理目的的可用和统一的格式。该技术提供了一种可视化工具来评估和报告数据质量问题,并提供了一种创新的算法来解决这些问题。初步结果表明,通过将提出的质量保证算法应用于团队获得的6个数据集,优质检验数据的百分比从50%-75%(预处理)提高到95%(后处理)。更重要的是,拟议的技术包括一个全面、统一和有质量保证的国家下水道清单,它记录了下水道管道的历史和当前状况。通过区域NSF I-Corps现场项目,得出的结论是,由于在检查过程和修复计划中可以实现时间和成本的节省,公用事业和承包商对拟议的技术有巨大的需求。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yongwei Shan其他文献
Factors Influencing Fire Safety on Building Construction Sites: A Fire Officer’s Perspective
影响建筑工地消防安全的因素:消防官的视角
- DOI:
10.1061/(asce)co.1943-7862.0002144 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Jaehong Kim;Yongwei Shan;Sohee Kim;Dong;Haejun Park;C. Bang - 通讯作者:
C. Bang
Integration of Building Information Modeling and Critical Path Method Schedules to Simulate the Impact of Temperature and Humidity at the Project Level
集成建筑信息模型和关键路径方法明细表来模拟项目级别的温度和湿度的影响
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Yongwei Shan;Paul M. Goodrum - 通讯作者:
Paul M. Goodrum
Gender Bias and Its Impact on Self-Concept in Undergraduate and Graduate Construction Education Programs in the United States
美国本科和研究生建设教育项目中的性别偏见及其对自我概念的影响
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:5.1
- 作者:
Amy King;Yongwei Shan;Mel Ivey - 通讯作者:
Mel Ivey
Topology-aware mamba for crack segmentation in structures
用于结构中裂缝分割的拓扑感知曼巴
- DOI:
10.1016/j.autcon.2024.105845 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:11.500
- 作者:
Xin Zuo;Yu Sheng;Jifeng Shen;Yongwei Shan - 通讯作者:
Yongwei Shan
SPEAR: Social Presence Enabled Augmented Reality Tool for Engineering Education
SPEAR:用于工程教育的社交存在增强现实工具
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Saurav Shrestha;Yongwei Shan;Nakisa Donnelly - 通讯作者:
Nakisa Donnelly
Yongwei Shan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yongwei Shan', 18)}}的其他基金
PFI TT: Intelligent quality assurance and integration tool for sewer inspection data
PFI TT:下水道检查数据的智能质量保证和集成工具
- 批准号:
2141184 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
高维数据的函数型数据(functional data)分析方法
- 批准号:11001084
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
- 批准号:31060015
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:地区科学基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Fusion of Siloed Data for Multistage Manufacturing Systems: Integrative Product Quality and Machine Health Management
协作研究:多级制造系统的孤立数据融合:集成产品质量和机器健康管理
- 批准号:
2323083 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
CAREER: Causal Modeling for Data Quality and Bias Mitigation
职业:数据质量和偏差缓解的因果建模
- 批准号:
2340124 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
National Edge AI Hub for Real Data: Edge Intelligence for Cyber-disturbances and Data Quality
用于真实数据的国家边缘人工智能中心:针对网络干扰和数据质量的边缘智能
- 批准号:
EP/Y028813/1 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Research Grant
Conference: The 2024 Joint Research Conference on Statistics in Quality, Industry, and Technology (JRC 2024) - Data Science and Statistics for Industrial Innovation
会议:2024年质量、工业和技术统计联合研究会议(JRC 2024)——数据科学与统计促进产业创新
- 批准号:
2404998 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: Fusion of Siloed Data for Multistage Manufacturing Systems: Integrative Product Quality and Machine Health Management
协作研究:多级制造系统的孤立数据融合:集成产品质量和机器健康管理
- 批准号:
2323084 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: Fusion of Siloed Data for Multistage Manufacturing Systems: Integrative Product Quality and Machine Health Management
协作研究:多级制造系统的孤立数据融合:集成产品质量和机器健康管理
- 批准号:
2323082 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: Automated Quality Assurance and Quality Control for the StraboSpot Geologic Information System and Observational Data
合作研究:框架:StraboSpot 地质信息系统和观测数据的自动化质量保证和质量控制
- 批准号:
2311822 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Data Quality in Manufacturing Industrial Internet Integration
制造业工业互联网集成中的数据质量
- 批准号:
2331985 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
EO4AgroClimate: VISualisation and Assessment of water quality using an Open Data Cube FOR the weStern English chAnnel - Vis4Sea.
EO4AgroClimate:使用西方英语频道 Vis4Sea 的开放数据立方体进行水质可视化和评估。
- 批准号:
ST/Y003039/1 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Research Grant
Collaborative Research: Frameworks: Automated Quality Assurance and Quality Control for the StraboSpot Geologic Information System and Observational Data
合作研究:框架:StraboSpot 地质信息系统和观测数据的自动化质量保证和质量控制
- 批准号:
2311821 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant