RAPID: Improving Predictions of Evacuation Decisions
RAPID:改进疏散决策的预测
基本信息
- 批准号:1849598
- 负责人:
- 金额:$ 1.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will use anthropological approaches to improve measurement and understanding of hurricane evacuation decisions, and ultimately improve prediction of evacuations. Population surveys have attempted to understand evacuation principally in terms of the socio-demographic characteristics of those who do and do not evacuate. Data collected on evacuation estimates over the last two decades indicate that about one-third of residents in evacuation zones fail to evacuate. Despite this, there is no clear or standardized set of evacuation rationales, making it difficult to generalize across studies and regions. This project will explore whether a new set of methods for evaluating evacuation decisions can be replicated across regions and storms, in order to better predict evacuation decisions. Findings will be disseminated to organizations that explore and manage the causes, consequences, and complexities of disaster management and recovery.This RAPID award supports the collection of time-sensitive data concerning mandatory evacuation for Hurricane Irma in Florida. In order to get reliable reports concerning motives and beliefs about evacuation, interviews must be conducted in a context where respondents can form the appropriate associative cognitive state related to anthropogenic events necessary for free-listing exercises. This also needs to be conducted before another storm occurs. The researchers will use interviewing techniques from anthropology to collect reasons for evacuation/non-evacuation. Interviews will be conducted with neighbor-pairs (one who did and one did not evacuate) in both higher and lower storm risk zones (20 pairs) to elicit reasons for evacuating or not evacuating. Neighbor-matching is important to control for extraneous factors (such as wealth or distance from water) that might influence evacuation. Recent research suggests that free-list interviews are far more productive than standard open-ended questions. The researchers' previous work, successfully used free-listing to obtain a comprehensive set of evacuation/non-evacuation rationales on Hurricane Ike, in Galveston, Texas. The data collected in this project would improve the robustness, reliability, and replicability of these methodologies and models across evacuation contexts. If the data is replicable, the project would constitute a methodological innovation for anthropology specifically, and for disaster-related science more generally.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将使用人类学方法来改善对飓风疏散决定的测量和理解,并最终改善对疏散的预测。人口调查试图主要从撤离者和未撤离者的社会人口特征的角度来理解撤离。过去20年来收集的关于疏散估计的数据表明,疏散区约有三分之一的居民未能疏散。尽管如此,没有一套明确或标准化的疏散原理,因此很难在研究和地区之间进行概括。该项目将探索一套评估疏散决策的新方法是否可以在不同地区和风暴中复制,以便更好地预测疏散决策。调查结果将分发给探索和管理灾难管理和恢复的原因,后果和复杂性的组织。该RAPID奖项支持收集有关佛罗里达飓风伊尔玛强制疏散的时间敏感数据。为了得到可靠的报告,关于疏散的动机和信念,访谈必须进行的背景下,受访者可以形成适当的联想认知状态相关的人为事件所必需的自由列表练习。这也需要在另一场风暴发生之前进行。研究人员将使用人类学的访谈技术来收集疏散/不疏散的原因。将在较高和较低风暴风险区(20对)与邻居对(一人撤离,一人未撤离)进行访谈,以了解撤离或不撤离的原因。邻居匹配对于控制可能影响疏散的外部因素(例如财富或距水的距离)非常重要。最近的研究表明,自由列表面试比标准的开放式问题更有成效。研究人员之前的工作,成功地使用自由列表,以获得一套全面的疏散/非疏散的理由飓风艾克,在加尔维斯顿,得克萨斯州。本项目收集的数据将提高这些方法和模型在疏散环境中的鲁棒性、可靠性和可复制性。如果数据是可复制的,该项目将构成一个方法论的创新,特别是人类学,并为灾害相关的科学更普遍。这个奖项反映了NSF的法定使命,并已被认为是值得支持的评估使用基金会的知识价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Susan Weller其他文献
Susan Weller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Susan Weller', 18)}}的其他基金
SGER: Perceived Risk and Compliance with a Mandatory Evacuation Order
SGER:感知风险和遵守强制疏散令
- 批准号:
0906463 - 财政年份:2009
- 资助金额:
$ 1.97万 - 项目类别:
Standard Grant
Phylogenetic and Comparative Studies of Tiger moths (Lepidoptera: Noctuoidae)
虎蛾(鳞翅目:夜蛾科)的系统发育和比较研究
- 批准号:
0919185 - 财政年份:2009
- 资助金额:
$ 1.97万 - 项目类别:
Standard Grant
AToL: Collaborative: Phylogeny of Lepidoptera: A Genomics-inspired, Community Collaboration
AToL:合作:鳞翅目系统发育:基因组学启发的社区合作
- 批准号:
0531639 - 财政年份:2006
- 资助金额:
$ 1.97万 - 项目类别:
Standard Grant
Group Travel: XXII International Congress of Entomology, Brisbane, Australia, August 2004
团体旅行:第二十二届国际昆虫学大会,澳大利亚布里斯班,2004 年 8 月
- 批准号:
0319273 - 财政年份:2003
- 资助金额:
$ 1.97万 - 项目类别:
Standard Grant
COLLABORATIVE RESEARCH: Cultural Beliefs and Health Status in Type 2 Diabetics
合作研究:2 型糖尿病患者的文化信仰和健康状况
- 批准号:
0108232 - 财政年份:2001
- 资助金额:
$ 1.97万 - 项目类别:
Standard Grant
Phylogeny of Tiger Moths (Arctiidae) and Evolution of Courtship & Defense Behaviors
虎蛾(Arctiidae)的系统发育和求偶进化
- 批准号:
9981416 - 财政年份:2000
- 资助金额:
$ 1.97万 - 项目类别:
Standard Grant
Collaborative: Intercultural Variation in Illness Beliefs
协作:疾病信念的跨文化差异
- 批准号:
9727322 - 财政年份:1998
- 资助金额:
$ 1.97万 - 项目类别:
Continuing Grant
Dissertation Research: Evolution of Wasp Mimicry in Tiger Moths
论文研究:虎蛾拟态黄蜂的进化
- 批准号:
9701001 - 财政年份:1997
- 资助金额:
$ 1.97万 - 项目类别:
Standard Grant
Investigation of Noctuoid Moth Phylogeny Using Molecules and Morphology
利用分子和形态学研究夜蛾系统发育
- 批准号:
9306755 - 财政年份:1993
- 资助金额:
$ 1.97万 - 项目类别:
Standard Grant
Study of Intra and Inter-Cultural Variation in Beliefs with a Focus on Folk Illness
以民间疾病为重点的信仰内部和文化间差异研究
- 批准号:
9204555 - 财政年份:1992
- 资助金额:
$ 1.97万 - 项目类别:
Continuing Grant
相似国自然基金
Improving modelling of compact binary evolution.
- 批准号:10903001
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Understanding and improving AMOC forecasts in inter-annual to decadal climate predictions
了解并改进 AMOC 在年际至十年间气候预测中的预测
- 批准号:
2890063 - 财政年份:2023
- 资助金额:
$ 1.97万 - 项目类别:
Studentship
COntinental COnvective OrganisatioN and rainfall intensification in a warming world: Improving storm predictions from hours to decades (COCOON)
变暖世界中的大陆对流组织和降雨强度:将风暴预测从几小时提高到几十年(COCOON)
- 批准号:
NE/X017419/1 - 财政年份:2023
- 资助金额:
$ 1.97万 - 项目类别:
Fellowship
Improving our understanding and predictions of the impacts of groundwater extraction on small streams
提高我们对地下水开采对小溪流影响的理解和预测
- 批准号:
RGPIN-2016-04149 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Optimization of Sampling Design For Predictive Digital Soil Mapping: Reducing Uncertainty, Improving Predictions and Gaining Efficiencies in Sampling Programs
预测数字土壤测绘的采样设计优化:减少不确定性、改进预测并提高采样计划的效率
- 批准号:
535671-2019 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Postgraduate Scholarships - Doctoral
Wisdom-of-Crowds Approaches for Improving Predictions from Surveys
提高调查预测的群体智慧方法
- 批准号:
2019982 - 财政年份:2020
- 资助金额:
$ 1.97万 - 项目类别:
Standard Grant
CEDAR: Resolving Thermosphere Response Times to Auroral and Solar Energy Inputs and Improving Neutral Density Predictions
CEDAR:解决热层对极光和太阳能输入的响应时间并改进中性密度预测
- 批准号:
2019465 - 财政年份:2020
- 资助金额:
$ 1.97万 - 项目类别:
Standard Grant
Experimental and Computational Methods for Scaling-up Transcriptome Analyses and Improving Disease Risk Predictions
扩大转录组分析和改善疾病风险预测的实验和计算方法
- 批准号:
10473832 - 财政年份:2020
- 资助金额:
$ 1.97万 - 项目类别:
SWQU: Improving Space Weather Predictions with Data-Driven Models of the Solar Atmosphere and Inner Heliosphere
SWQU:利用太阳大气层和内日光层的数据驱动模型改进空间天气预报
- 批准号:
2028154 - 财政年份:2020
- 资助金额:
$ 1.97万 - 项目类别:
Standard Grant
Optimization of Sampling Design For Predictive Digital Soil Mapping: Reducing Uncertainty, Improving Predictions and Gaining Efficiencies in Sampling Programs
预测数字土壤测绘的采样设计优化:减少不确定性、改进预测并提高采样计划的效率
- 批准号:
535671-2019 - 财政年份:2020
- 资助金额:
$ 1.97万 - 项目类别:
Postgraduate Scholarships - Doctoral
Experimental and Computational Methods for Scaling-up Transcriptome Analyses and Improving Disease Risk Predictions
扩大转录组分析和改善疾病风险预测的实验和计算方法
- 批准号:
10266794 - 财政年份:2020
- 资助金额:
$ 1.97万 - 项目类别: