Combining Simulation and Spectroscopy to Determine the Structure and Dynamics of Adsorbed Proteins - Application to Biomass Conversion

结合模拟和光谱学来确定吸附蛋白质的结构和动力学 - 在生物质转化中的应用

基本信息

项目摘要

Society's ability to engineer new systems for converting renewable resources into useful products is, in many cases, dependent on interfacial processes (e.g., enzymatic conversion of an insoluble polysaccharide). These interfaces are incredibly challenging to study at the atomic scale, with comparatively little success over the last decade in engineering improved systems. Therefore, we propose a collaborative research effort between the University of Washington and the Max Planck Institute for Polymer Research to deeply integrate state of the art multiscale molecular modeling tools with sum frequency generation spectroscopy (SFG). Enzymatic biomass conversion, like many biological processes, is rate-controlled by interfacial phenomena. In the case of biomass conversion, the insoluble cellulose microfibril creates diffusion limitations as the reaction cannot proceed prior to collision and proper alignment/binding. Cellulase enzymes have evolved precise carbohydrate binding modules (CBMs) to provide an increase in concentration of enzyme active sites near the interface, which leads to concomitant rate enhancement. Some CBMs may also promote rates by beneficially altering the microfibril structure. However, due to the general difficulty of studying protein structure at interfaces, only very little is known about the structural basis of specific CBM binding. Questions we ask are: What structural motives are involved in cellulose binding? What amino acids side chains bind the cellulose surface? Successful completion of this research project will lead to a wealth of new fundamental and applied knowledge about interfacial biocatalysis. Specifically, by providing the atomic scale structure and dynamics of the binding module on a cellulose surface we will provide needed insight into the governing kinetic and energetic contributions that give rise to the mechanism of cellulase action. Such information is a precursor for rational engineering studies to improve catalytic rates. More broadly, successful demonstration of our approach to strongly couple molecular simulation and SFG experiments will transform the way researchers investigate biomolecules at interfaces. We believe this work will lead to a general computational/experimental framework for studying interfacial biocatalysis, which does not currently exist.
在许多情况下,社会设计将可再生资源转化为有用产品的新系统的能力取决于界面过程(例如,不溶性多糖的酶促转化)。这些接口在原子尺度上进行研究具有极大的挑战性,过去十年在工程改进系统方面取得的成功相对较少。因此,我们建议华盛顿大学和马克斯普朗克聚合物研究所之间的合作研究工作,以深入整合最先进的多尺度分子建模工具与和频发生光谱(SFG)。与许多生物过程一样,酶促生物质转化是由界面现象控制的速率。 在生物质转化的情况下,不溶性纤维素微纤丝产生扩散限制,因为反应在碰撞和适当的对齐/结合之前不能进行。纤维素酶已经进化出精确的碳水化合物结合模块(CBM),以提供界面附近的酶活性位点浓度的增加,这导致伴随的速率增强。一些CBM还可以通过有益地改变微纤维结构来提高速率。然而,由于研究界面蛋白质结构的普遍困难,人们对特定煤层气结合的结构基础知之甚少。我们要问的问题是:纤维素结合的结构动机是什么?什么氨基酸侧链结合纤维素表面?该研究项目的成功完成将为界面生物催化提供丰富的基础知识和应用知识。 具体而言,通过提供纤维素表面上的结合模块的原子尺度结构和动力学,我们将提供所需的洞察力的支配动力学和能量的贡献,引起纤维素酶的作用机制。 这些信息是提高催化率的合理工程研究的先导。 更广泛地说,我们强耦合分子模拟和SFG实验的方法的成功演示将改变研究人员在界面上研究生物分子的方式。 我们相信这项工作将导致一个通用的计算/实验框架,研究界面生物催化,这是目前不存在的。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ice-binding site of surface-bound type III antifreeze protein partially decoupled from water.
  • DOI:
    10.1039/c8cp03382j
  • 发表时间:
    2018-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Verreault;S. Alamdari;Steven Joop Roeters;R. Pandey;J. Pfaendtner;T. Weidner
  • 通讯作者:
    D. Verreault;S. Alamdari;Steven Joop Roeters;R. Pandey;J. Pfaendtner;T. Weidner
Bovine and human insulin adsorption at lipid monolayers: a comparison
牛和人胰岛素在脂质单层上的吸附:比较
  • DOI:
    10.3389/fphy.2015.00051
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    S. Mauri;R. Pandey;I. Rzezicka;M. Bonn;T. Weidner
  • 通讯作者:
    T. Weidner
Thiolated Lysine‐Leucine Peptides Self‐Assemble into Biosilica Nucleation Pits on Gold Surfaces
硫醇化赖氨酸亮氨酸肽自组装成金表面上的生物二氧化硅成核坑
  • DOI:
    10.1002/admi.201700399
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Y. Yimer;R. Berger;M. Bonn;J. Pfaendtner;T. Weidner
  • 通讯作者:
    T. Weidner
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Tobias Weidner其他文献

Professor Dr. Tobias Weidner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Tobias Weidner', 18)}}的其他基金

A Multi-Spectroscopic Investigation of Protein Structure in Biosilica Composites
生物二氧化硅复合材料中蛋白质结构的多光谱研究
  • 批准号:
    223363403
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Molekulare Struktur und Dynamik von Modellpeptiden und Protein G auf selbstorganisierten Monolagen
自组装单层上模型肽和 G 蛋白的分子结构和动力学
  • 批准号:
    70222940
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships

相似国自然基金

Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

Unraveling the progenitors of Type Ia supernova remnants through combining high resolution X-ray spectroscopy and numerical simulation
通过结合高分辨率 X 射线光谱和数值模拟来解开 Ia 型超新星遗迹的前身
  • 批准号:
    22KJ1047
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Ultrafast spectroscopy simulation of low-dimensional strongly correlated electron systems using tensor network
使用张量网络的低维强相关电子系统的超快光谱模拟
  • 批准号:
    23K03286
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Simulation-guided spectroscopy and refinement of heterogenous conformational ensembles
模拟引导光谱学和异质构象系综的细化
  • 批准号:
    10668473
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Simulation-guided spectroscopy and refinement of heterogenous conformational ensembles
模拟引导光谱学和异质构象系综的细化
  • 批准号:
    10297449
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Simulation-guided spectroscopy and refinement of heterogenous conformational ensembles
模拟引导光谱学和异质构象系综的细化
  • 批准号:
    10494226
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Understanding the Structure and Dynamics of Solvated Electrons Using Ultrafast Spectroscopy and Quantum Simulation Methods
使用超快光谱和量子模拟方法了解溶剂化电子的结构和动力学
  • 批准号:
    1856050
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Development of finite element simulation and machine learning models relating to Electrical Impedance Spectroscopy
与电阻抗谱相关的有限元模拟和机器学习模型的开发
  • 批准号:
    2306911
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploration of the anharmonicity of phonons modes in molecular crystals with temperature-dependent and high-field terahertz spectroscopy and ab initio simulation
利用温度相关的高场太赫兹光谱和从头计算模拟探索分子晶体中声子模式的非谐性
  • 批准号:
    18K05034
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analyzing of nonlinear vibrational spectroscopy from classical molecular dynamics simulation with intermolecular charge transfer effects
从经典分子动力学模拟与分子间电荷转移效应分析非线性振动光谱
  • 批准号:
    17J03111
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Understanding the Structure and Dynamics of Solvated Electrons Using Ultrafast Spectroscopy and Mixed Quantum/Classical Molecular Dynamics Simulation
使用超快光谱和混合量子/经典分子动力学模拟了解溶剂化电子的结构和动力学
  • 批准号:
    1565434
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了