Leveraging Learning Assistantships, Mentoring, and Scholarships to Develop Self-Determined Mathematics Teachers for West Texas

利用学习助学金、辅导和奖学金为西德克萨斯州培养自主数学教师

基本信息

  • 批准号:
    1852944
  • 负责人:
  • 金额:
    $ 144.14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

With support from the NSF Robert Noyce Teacher Scholarship Program, this Track 1 Scholarships and Stipends project aims to serve the national interest in high-quality STEM teaching. This proposal specifically responds to a national and local shortage in qualified and certified mathematics teachers. Over the five-year duration of the award, the project aims to produce 27 new, certified mathematics teachers who will teach in high-need school districts in West Texas. The work will be done by a partnership that includes Texas Tech University, two community colleges (South Plains College and Midland College), and the Lubbock Independent School District. The project will recruit first- and second-year undergraduates and provide them with an early teaching experience through work as Learning Assistants in college-level math classes. By providing the learning assistant with financial support, near-peer mentoring, and direct classroom experience, This recruitment strategy is expected to encourage students to pursue a career in secondary mathematics teaching. The goals of this project are to: 1) Attract high quality, diverse, STEM undergraduate students to complete a Bachelor of Science in Multi-Disciplinary Studies degree with secondary mathematics certification; 2) Create a pathway for community college students to earn a STEM degree and teacher certification in mathematics and a career in middle school or high school teaching; 3) Prepare self-determined mathematics teachers who have a high degree of both content and pedagogical knowledge, 4) Retain 27 recipients as mathematics teachers; and 5) Augment research and tracking activities of recipients. In Stage I of this project, undergraduate students will be recruited from the two community colleges and Texas Tech University to serve as learning assistants who will support a STEM classroom under the direct supervision of a teacher or faculty member. In Stage II, those students who determine to pursue a teaching career will be invited to apply for a Noyce scholarship and complete the multidisciplinary studies degree. A self-determination rubric, which was developed through prior awards, and specific application criteria (e.g., GPA) will be used to inform Scholar selection. As part of Stage II, this project will use successful activities from prior Noyce awards, including a mentorship model, the self-determination framework, and a scholarship seminar. The project evaluation plan includes the use of the self-determination rubric, student demographics, student surveys, document analysis, performance tracking and persistency tracking. The research methodology will be an outcomes comparison between participants and non-participants. Each of the research questions will be examined through a participant profile analysis, descriptive qualitative comparisons, and a Multiple Level Analysis of Variance (MANOVA) on performance outcomes. This project may benefit the nation by developing a better understanding of how to recruit and retain highly-qualified mathematics teachers and attract them to teach in high-need school districts. More immediately, this project should help to fill the vacant positions in mathematics teaching in local schools. The Noyce program supports talented STEM undergraduate majors and professionals to become effective K-12 STEM teachers and experienced, exemplary K-12 STEM teachers to become STEM master teachers in high-need school districts. It also supports research on the persistence, retention, and effectiveness of K-12 STEM teachers in high-need school districts.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在NSF Robert Noyce教师奖学金计划的支持下,该项目旨在为高质量STEM教学的国家利益服务。 这项建议专门针对国家和地方缺乏合格和合格的数学教师的问题。在该奖项的五年期间,该项目旨在培养27名新的认证数学教师,他们将在西德克萨斯州的高需求学区任教。这项工作将由包括德克萨斯理工大学、两所社区学院(南平原学院和米德兰学院)以及拉伯克独立学区在内的合作伙伴完成。 该项目将招募一年级和二年级的本科生,并通过在大学数学课程中担任学习助理,为他们提供早期教学经验。通过为学习助理提供财政支持,近同行指导和直接的课堂经验,这种招聘策略预计将鼓励学生从事中学数学教学。该项目的目标是:1)吸引高质量,多样化,STEM本科生完成多学科研究理学学士学位,并获得中学数学认证; 2)为社区大学生创造一条获得STEM学位和数学教师认证以及中学或高中教学职业的途径; 3)准备自主的数学教师谁拥有高度的内容和教学知识,4)保留27个收件人作为数学教师,和5)加强研究和跟踪活动的收件人。 在该项目的第一阶段,将从两所社区学院和德克萨斯理工大学招募本科生担任学习助理,他们将在教师或教职员工的直接监督下支持STEM教室。 在第二阶段,那些决定从事教学职业的学生将被邀请申请诺伊斯奖学金并完成多学科研究学位。通过先前的裁决制定的自决规则和具体的申请标准(例如,GPA)将用于通知学者选择。 作为第二阶段的一部分,该项目将利用诺伊斯奖以前的成功活动,包括导师模式、自决框架和奖学金研讨会。项目评估计划包括使用自决规则、学生人口统计、学生调查、文件分析、业绩跟踪和持久性跟踪。研究方法将是参与者和非参与者之间的结果比较。每个研究问题将通过参与者档案分析,描述性定性比较和多水平方差分析(MANOVA)的性能结果进行检查。这个项目可能会使国家受益,更好地了解如何招聘和留住高素质的数学教师,并吸引他们在高需求的学区任教。更直接的是,这项计划应有助于填补当地学校数学教学的空缺。诺伊斯计划支持有才华的STEM本科专业和专业人士成为有效的K-12 STEM教师和经验丰富的模范K-12 STEM教师,成为高需求学区的STEM硕士教师。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Supporting Undergraduate STEMM Education: Perspectives from Faculty Mentors and Learning Assistants in Calculus II
  • DOI:
    10.3390/educsci11030143
  • 发表时间:
    2021-03-01
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Hite, Rebecca;Johnson, Levi;Griffith, Ken
  • 通讯作者:
    Griffith, Ken
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rebecca Hite其他文献

Empowering Student Action Through Climate Literacy Development
通过气候素养培养增强学生行动能力
  • DOI:
    10.1080/08872376.2024.2340364
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jocelyn Miller;G. Childers;Rebecca Hite
  • 通讯作者:
    Rebecca Hite
Historically underrepresented and marginalized science fiction convention attendees’ life experiences related to science and science fiction
  • DOI:
    10.1007/s11422-024-10234-2
  • 发表时间:
    2024-10-10
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Gina Childers;Rebecca Hite;Joshua Cruz;Weverton Ataide Pinheiro;Kania Greer;Samanthia Noble;Christi Whitworth
  • 通讯作者:
    Christi Whitworth
The Tatanka Teacher
塔坦卡老师
  • DOI:
    10.1080/00368148.2024.2315672
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Linda Rost;Rebecca Hite;G. Childers;Sweeney Windchief
  • 通讯作者:
    Sweeney Windchief

Rebecca Hite的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
  • 批准号:
    62003314
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
  • 批准号:
    61902016
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
  • 批准号:
    61806040
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
  • 批准号:
    51769027
  • 批准年份:
    2017
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
  • 批准号:
    61573081
  • 批准年份:
    2015
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
  • 批准号:
    61572533
  • 批准年份:
    2015
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目
E-Learning中学习者情感补偿方法的研究
  • 批准号:
    61402392
  • 批准年份:
    2014
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
  • 批准号:
    10093095
  • 财政年份:
    2024
  • 资助金额:
    $ 144.14万
  • 项目类别:
    Collaborative R&D
6G Goal-Oriented AI-enabled Learning and Semantic Communication Networks (6G Goals)
6G目标导向的人工智能学习和语义通信网络(6G目标)
  • 批准号:
    10110118
  • 财政年份:
    2024
  • 资助金额:
    $ 144.14万
  • 项目类别:
    EU-Funded
Quantum Machine Learning for Financial Data Streams
金融数据流的量子机器学习
  • 批准号:
    10073285
  • 财政年份:
    2024
  • 资助金额:
    $ 144.14万
  • 项目类别:
    Feasibility Studies
Explainable machine learning for electrification of everything
可解释的机器学习,实现万物电气化
  • 批准号:
    LP230100439
  • 财政年份:
    2024
  • 资助金额:
    $ 144.14万
  • 项目类别:
    Linkage Projects
Learning to Reason in Reinforcement Learning
在强化学习中学习推理
  • 批准号:
    DP240103278
  • 财政年份:
    2024
  • 资助金额:
    $ 144.14万
  • 项目类别:
    Discovery Projects
Learning how we learn: linking inhibitory brain circuits to motor learning
了解我们如何学习:将抑制性大脑回路与运动学习联系起来
  • 批准号:
    DE240100201
  • 财政年份:
    2024
  • 资助金额:
    $ 144.14万
  • 项目类别:
    Discovery Early Career Researcher Award
Trustworthy Hypothesis Transfer Learning
可信假设迁移学习
  • 批准号:
    DE240101089
  • 财政年份:
    2024
  • 资助金额:
    $ 144.14万
  • 项目类别:
    Discovery Early Career Researcher Award
Developing and Visualising a Retrieval-Augmented Deep Learning Model for Population Health Management
开发和可视化用于人口健康管理的检索增强深度学习模型
  • 批准号:
    2905946
  • 财政年份:
    2024
  • 资助金额:
    $ 144.14万
  • 项目类别:
    Studentship
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 144.14万
  • 项目类别:
    Research Grant
Machine Learning for Computational Water Treatment
用于计算水处理的机器学习
  • 批准号:
    EP/X033244/1
  • 财政年份:
    2024
  • 资助金额:
    $ 144.14万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了