Ultrafast and Energy-efficient Anti-ferromagnetic Electric-field-controlled Memory Devices

超快且节能的反铁磁电场控制存储器件

基本信息

  • 批准号:
    1853879
  • 负责人:
  • 金额:
    $ 33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-05-15 至 2023-04-30
  • 项目状态:
    已结题

项目摘要

There is a fast-growing demand for new on-chip memory and data storage solutions in computing systems, fueled by the growth of data-intensive computing tasks for artificial intelligence and autonomous systems. Increasingly, the performance of computing systems is determined by the speed and energy efficiency of reading data from or writing it into the memory components of the system, rather than the speed with which logic operations can be performed. This trend is driving a paradigm shift of the semiconductor industry from logic-centric to memory-centric computing architectures, where storage and processing of data are closely integrated to increase computational efficiency. This memory-centric computing paradigm puts new requirements on the memory devices in terms of speed, switching energy, endurance, and manufacturing processes. However, present memory solutions do not scale adequately to address all of these demands and suffer from standby power dissipation due to leakage and/or refresh requirements. This project is focused on the development of a new type of two-terminal magnetic memory device, referred to as antiferromagnetic voltage-controlled memory, to address the requirements of memory-centric computing applications. In addition to its technical and scientific impact, the project will impact the education of students at undergraduate and graduate levels, including women and underrepresented minorities at Northwestern. The students will study, develop, and implement state-of-the-art nano-fabrication and high-speed measurements for emerging memory devices, working at the intersection of physics, material science, and electrical engineering. Due to the interdisciplinary nature of the project, they will also take part in collaborations with industry and other departments at Northwestern and other universities. The project also leverages and contributes to on-going outreach efforts at Northwestern, engaging the general public in the advancement of science.The proposed project incorporates two innovative elements in the device structure of magnetic random-access memory: (i) It uses metallic antiferromagnetic layers with uniaxial magnetic anisotropy for data storage. This is different from the conventionally used ferromagnetic free layers in existing magnetic memory, and provides a number of advantages: First, due to the zero overall magnetic moment of the antiferromagnet, the resulting device is robust against external magnetic fields, without any requirements for magnetic shielding. Second, it eliminates bit-to-bit dipole interactions, which may result in scaling challenges and increased error rates in ferromagnetic memory arrays with tight pitch. Third, much faster switching can be achieved using antiferromagnetic resonance, which can have frequencies up to the Terahertz range due to the large built-in exchange field of the antiferromagnetic material. (ii) Voltage-Controlled Magnetic Anisotropy will be used for energy-efficient writing of data. Specifically, a very short voltage pulse will be used to initiate the resonant dynamics and will be timed to result in a voltage-induced complete switching of the N?el vector. The switching occurs without the need for electric current, thus reducing write energy to reach the atto-Joule per bit range. The voltage-controlled magnetic anisotropy effect has previously only been demonstrated in the case of ferromagnetic devices. Hence, its demonstration and utilization in the case of antiferromagnets is one of the key intellectual merits of the present proposal.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由于人工智能和自治系统的数据密集型计算任务的增长,计算系统中对新的片上存储器和数据存储解决方案的需求快速增长。 越来越多地,计算系统的性能由从系统的存储器组件阅读数据或将其写入系统的存储器组件的速度和能量效率来确定,而不是由可以执行逻辑操作的速度来确定。这种趋势正在推动半导体行业从以逻辑为中心的计算架构向以存储器为中心的计算架构的范式转变,其中数据的存储和处理紧密集成以提高计算效率。 这种以存储器为中心的计算模式在速度、开关能量、耐久性和制造工艺方面对存储器设备提出了新的要求。 然而,目前的存储器解决方案不能充分扩展以解决所有这些需求,并且由于泄漏和/或刷新要求而遭受待机功耗。 该项目的重点是开发一种新型的双端磁存储器件,称为反铁磁压控存储器,以满足以存储器为中心的计算应用的要求。 除了其技术和科学的影响,该项目将影响学生在本科和研究生阶段的教育,包括妇女和少数民族在西北。学生将学习,开发和实施最先进的纳米制造和高速测量新兴的存储设备,在物理学,材料科学和电气工程的交叉点工作。 由于该项目的跨学科性质,他们还将参加与西北大学和其他大学的工业和其他部门的合作。该项目还利用并促进了西北大学正在进行的外展工作,使公众参与科学的进步。拟议的项目在磁性随机存取存储器的器件结构中包含两个创新元素:(i)它使用具有单轴磁各向异性的金属反铁磁层进行数据存储。这不同于现有磁存储器中常规使用的铁磁自由层,并且提供了许多优点:首先,由于反铁磁体的零总磁矩,所得到的器件对外部磁场是鲁棒的,而不需要任何磁屏蔽。 其次,它消除了位对位偶极相互作用,这可能导致缩放挑战和具有紧密间距的铁磁存储器阵列中的错误率增加。第三,使用反铁磁共振可以实现更快的切换,由于反铁磁材料的大的内置交换场,反铁磁共振可以具有高达太赫兹范围的频率。 (ii)电压控制磁各向异性将用于数据的节能写入。 具体而言,一个非常短的电压脉冲将被用来启动的谐振动力学,并将定时导致电压诱导的N?el vector.开关发生时不需要电流,从而减少写入能量,达到阿托焦耳每比特范围。 电压控制的磁各向异性效应以前只在铁磁器件的情况下得到证明。 因此,在反铁磁体的情况下,它的演示和使用是本提案的关键知识价值之一。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dynamics of domain-wall motion driven by spin-orbit torque in antiferromagnets
  • DOI:
    10.1103/physrevb.101.014433
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    L. Sánchez-Tejerina;V. Puliafito;P. Amiri;M. Carpentieri;G. Finocchio
  • 通讯作者:
    L. Sánchez-Tejerina;V. Puliafito;P. Amiri;M. Carpentieri;G. Finocchio
Antiferromagnetic Parametric Resonance Driven by Voltage-Controlled Magnetic Anisotropy
  • DOI:
    10.1103/physrevapplied.17.034004
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    R. Tomasello;R. Verba;V. Lopez-Dominguez;F. Garescì;M. Carpentieri;M. Di Ventra;P. Khalili Amiri;G. Finocchio
  • 通讯作者:
    R. Tomasello;R. Verba;V. Lopez-Dominguez;F. Garescì;M. Carpentieri;M. Di Ventra;P. Khalili Amiri;G. Finocchio
Electrical manipulation of the magnetic order in antiferromagnetic PtMn pillars
  • DOI:
    10.1038/s41928-020-0367-2
  • 发表时间:
    2020-02-10
  • 期刊:
  • 影响因子:
    34.3
  • 作者:
    Shi, Jiacheng;Lopez-Dominguez, Victor;Amiri, Pedram Khalili
  • 通讯作者:
    Amiri, Pedram Khalili
Domain periodicity in an easy-plane antiferromagnet with Dzyaloshinskii-Moriya interaction
  • DOI:
    10.1103/physrevb.102.224432
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    R. Tomasello;L. Sánchez-Tejerina;V. Lopez-Dominguez;F. Garescì;A. Giordano;M. Carpentieri;P. Amiri;G. Finocchio
  • 通讯作者:
    R. Tomasello;L. Sánchez-Tejerina;V. Lopez-Dominguez;F. Garescì;A. Giordano;M. Carpentieri;P. Amiri;G. Finocchio
Perspectives on field-free spin–orbit torque devices for memory and computing applications
  • DOI:
    10.1063/5.0135185
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    V. Lopez-Dominguez;Yixin Shao;P. Khalili Amiri
  • 通讯作者:
    V. Lopez-Dominguez;Yixin Shao;P. Khalili Amiri
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pedram Khalili Amiri其他文献

Magneto-ionic Control of Ferrimagnetic Order by Oxygen Gating
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
  • 作者:
    Xueqiang Feng;Zhenyi Zheng;Yue Zhang;Zhizhong Zhang;Yixin Shao;Yu He;Xiaohan Sun;Lei Chen;Kun Zhang;Pedram Khalili Amiri;Weisheng Zhao
  • 通讯作者:
    Weisheng Zhao
A 65-nm ReRAM-Enabled Nonvolatile Processor With Time-Space Domain Adaption and Self-Write-Termination Achieving > 4x Faster Clock Frequency and > 6x Higher Restore Speed
具有时空域适应和自写终止功能的 65 nm ReRAM 非易失性处理器,可实现 > 4 倍更快的时钟频率和 > 6 倍更高的恢复速度
  • DOI:
    10.1109/jssc.2017.2724024
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Zhibo Wang;Yongpan Liu;Albert Lee;Fang Su;Chieh-Pu Lo;Zhe Yuan;Jinyang Li;Chien-Chen Lin;Wei-Hao Chen;Hsiao-Yun Chiu;Wei-En Lin;Ya-Chin King;Chrong-Jung Lin;Pedram Khalili Amiri;Kang-Lung Wang;Meng-Fan Chang;Huazhong Yang
  • 通讯作者:
    Huazhong Yang
Large voltage-controlled magnetic anisotropy in the SrTiO3/Fe/Cu structure
SrTiO3/Fe/Cu 结构中的大电压控制磁各向异性
  • DOI:
    10.1063/1.4996275
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Shouzhong Peng;Sai Li;Wang Kang;Jiaqi Zhou;Na Lei;Youguang Zhang;Hongxin Yang;Xiang Li;Pedram Khalili Amiri;Kang L. Wang;Weisheng Zhao
  • 通讯作者:
    Weisheng Zhao
Joule Heating Effect on Field-Free Magnetization Switching by Spin-Orbit Torque in Exchange-Biased Systems
交换偏置系统中自旋轨道扭矩对无场磁化开关的焦耳热效应
  • DOI:
    10.1103/physrevapplied.7.024023
  • 发表时间:
    2017-02
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Seyed Armin Razavi;Di Wu;Guoqiang Yu;Yong-Chang Lau;Kin L. Wong;Weihua Zhu;Congli He;Zongzhi Zhang;J. M. D. Coey;Plamen Stamenov;Pedram Khalili Amiri;Kang L. Wang
  • 通讯作者:
    Kang L. Wang
Enhanced broadband RF detection in nanoscale magnetic tunnel junction by interface engineering
通过界面工程增强纳米级磁隧道结的宽带射频检测
  • DOI:
    10.1021/acsami.9b06706
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Like Zhang;Bin Fang;Jialin Cai;Weican Wu;Baoshun Zhang;Bochong Wang;Pedram Khalili Amiri;Giovanni Finocchio;Zhongming Zeng
  • 通讯作者:
    Zhongming Zeng

Pedram Khalili Amiri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pedram Khalili Amiri', 18)}}的其他基金

FET: Small: CMOS+X: Integration of CMOS and voltage-controlled magnetic tunnel junctions for probabilistic computing
FET:小型:CMOS X:集成 CMOS 和压控磁隧道结,用于概率计算
  • 批准号:
    2322572
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Verifying Deep Neural Networks with Spintronic Probabilistic Computers
合作研究:SHF:中:使用自旋电子概率计算机验证深度神经网络
  • 批准号:
    2311296
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Scalable Three Terminal Memory Devices based on Silicon-Compatible Antiferromagnetic Materials
基于硅兼容反铁磁材料的可扩展三端子存储器件
  • 批准号:
    2203243
  • 财政年份:
    2022
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Spintronic Spectrum Analyzer and Limiter based on Tunable Magnetic Tunnel Junction Arrays
基于可调谐磁隧道结阵列的自旋电子频谱分析仪和限制器
  • 批准号:
    2203242
  • 财政年份:
    2022
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
PFI-RP: Partnership to develop next-generation memory chips for intelligent computing systems.
PFI-RP:合作开发用于智能计算系统的下一代存储芯片。
  • 批准号:
    1919109
  • 财政年份:
    2019
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
SBIR Phase I: Electric-Field-Controlled Nonvolatile Magnetic Memory Devices
SBIR 第一阶段:电场控制的非易失性磁存储器件
  • 批准号:
    1314951
  • 财政年份:
    2013
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant

相似国自然基金

度量测度空间上基于狄氏型和p-energy型的热核理论研究
  • 批准号:
    QN25A010015
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

CAREER: Resilient and Efficient Automatic Control in Energy Infrastructure: An Expert-Guided Policy Optimization Framework
职业:能源基础设施中的弹性和高效自动控制:专家指导的政策优化框架
  • 批准号:
    2338559
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
ASCENT: Heterogeneously Integrated and AI-Empowered Millimeter-Wave Wide-Bandgap Transmitter Array towards Energy- and Spectrum-Efficient Next-G Communications
ASCENT:异构集成和人工智能支持的毫米波宽带隙发射机阵列,实现节能和频谱高效的下一代通信
  • 批准号:
    2328281
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
  • 批准号:
    2343607
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
CAREER: SHF: Bio-Inspired Microsystems for Energy-Efficient Real-Time Sensing, Decision, and Adaptation
职业:SHF:用于节能实时传感、决策和适应的仿生微系统
  • 批准号:
    2340799
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Collaborative Research: Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
合作研究:用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
  • 批准号:
    2343606
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Nanobubbles for effective and energy efficient water treatment
用于有效且节能的水处理的纳米气泡
  • 批准号:
    IE230100437
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Early Career Industry Fellowships
CCSCOC - novel energy-efficient carbon capture technology for mineralising carbon in molten waste to support heavy industry to reach net-zero
CCSCOC - 新型节能碳捕获技术,用于矿化熔融废物中的碳,支持重工业实现净零排放
  • 批准号:
    10091105
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Collaborative R&D
Manufacturing conductive oxides as catalyst support for energy efficient production of hydrogen and ammonia
制造导电氧化物作为氢和氨节能生产的催化剂载体
  • 批准号:
    2904783
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Studentship
CAREER: Unary Computing in Memory for Fast, Robust and Energy-Efficient Processing
职业:内存中的一元计算,实现快速、稳健和节能的处理
  • 批准号:
    2339701
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
CAREER: Computation-efficient Resolution for Low-Carbon Grids with Renewables and Energy Storage
职业:可再生能源和能源存储低碳电网的计算高效解决方案
  • 批准号:
    2340095
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了