Ultrafast and Energy-efficient Anti-ferromagnetic Electric-field-controlled Memory Devices
超快且节能的反铁磁电场控制存储器件
基本信息
- 批准号:1853879
- 负责人:
- 金额:$ 33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-15 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
There is a fast-growing demand for new on-chip memory and data storage solutions in computing systems, fueled by the growth of data-intensive computing tasks for artificial intelligence and autonomous systems. Increasingly, the performance of computing systems is determined by the speed and energy efficiency of reading data from or writing it into the memory components of the system, rather than the speed with which logic operations can be performed. This trend is driving a paradigm shift of the semiconductor industry from logic-centric to memory-centric computing architectures, where storage and processing of data are closely integrated to increase computational efficiency. This memory-centric computing paradigm puts new requirements on the memory devices in terms of speed, switching energy, endurance, and manufacturing processes. However, present memory solutions do not scale adequately to address all of these demands and suffer from standby power dissipation due to leakage and/or refresh requirements. This project is focused on the development of a new type of two-terminal magnetic memory device, referred to as antiferromagnetic voltage-controlled memory, to address the requirements of memory-centric computing applications. In addition to its technical and scientific impact, the project will impact the education of students at undergraduate and graduate levels, including women and underrepresented minorities at Northwestern. The students will study, develop, and implement state-of-the-art nano-fabrication and high-speed measurements for emerging memory devices, working at the intersection of physics, material science, and electrical engineering. Due to the interdisciplinary nature of the project, they will also take part in collaborations with industry and other departments at Northwestern and other universities. The project also leverages and contributes to on-going outreach efforts at Northwestern, engaging the general public in the advancement of science.The proposed project incorporates two innovative elements in the device structure of magnetic random-access memory: (i) It uses metallic antiferromagnetic layers with uniaxial magnetic anisotropy for data storage. This is different from the conventionally used ferromagnetic free layers in existing magnetic memory, and provides a number of advantages: First, due to the zero overall magnetic moment of the antiferromagnet, the resulting device is robust against external magnetic fields, without any requirements for magnetic shielding. Second, it eliminates bit-to-bit dipole interactions, which may result in scaling challenges and increased error rates in ferromagnetic memory arrays with tight pitch. Third, much faster switching can be achieved using antiferromagnetic resonance, which can have frequencies up to the Terahertz range due to the large built-in exchange field of the antiferromagnetic material. (ii) Voltage-Controlled Magnetic Anisotropy will be used for energy-efficient writing of data. Specifically, a very short voltage pulse will be used to initiate the resonant dynamics and will be timed to result in a voltage-induced complete switching of the N?el vector. The switching occurs without the need for electric current, thus reducing write energy to reach the atto-Joule per bit range. The voltage-controlled magnetic anisotropy effect has previously only been demonstrated in the case of ferromagnetic devices. Hence, its demonstration and utilization in the case of antiferromagnets is one of the key intellectual merits of the present proposal.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在计算系统中,对新的片上内存和数据存储解决方案的需求快速增长,这是由于人工智能和自主系统的数据密集型计算任务的增长所推动的。 越来越多地,计算系统的性能取决于从读取数据或将其写入系统内存组件的速度和能源效率,而不是可以执行逻辑操作的速度。这种趋势正在推动半导体行业从以逻辑为中心到以内存为中心的计算体系结构的范式转移,在该体系结构中,数据的存储和处理密切集成以提高计算效率。 这种以内存为中心的计算范式在速度,转换能量,耐力和制造过程方面对存储器设备提出了新的要求。 但是,当前的内存解决方案不能充分扩展以满足所有这些需求,并且由于泄漏和/或刷新要求而导致备用功率耗散。 该项目的重点是开发一种新型的两末端磁性存储器,称为反铁磁电压控制的内存,以解决以内存为中心的计算应用程序的要求。 除了其技术和科学影响外,该项目还将影响本科和研究生级别的学生的教育,包括西北地区的妇女和代表性不足的少数民族。学生将在物理,材料科学和电气工程的交叉点上研究,开发和实施针对新兴记忆设备的最先进的纳米制作和高速测量。 由于该项目的跨学科性质,他们还将与西北大学和其他大学的行业和其他部门合作。该项目还利用并有助于西北航空的持续外展工作,使公众参与科学的发展。该项目将两个创新的元素纳入了磁随机访问存储器的设备结构中:(i)它使用金属的抗抗磁性层与单十足的磁性磁磁以及单十足的磁性层进行数据存储。这与现有磁性内存中常规使用的铁磁不层不同,并提供了许多优点:首先,由于防击磁铁的总体磁矩为零,所得的设备对外部磁场具有强大的功能,而没有任何磁性屏蔽要求。 其次,它消除了位偶极相互作用,这可能会导致缩放挑战,并提高铁电磁记忆阵列中的错误率。第三,使用抗磁性共振可以实现更快的开关,由于抗铁磁材料的内置交换场,该频率可以具有到Terahertz范围的频率。 (ii)电压控制的磁各向异性将用于能节能数据。 具体而言,将使用非常短的电压脉冲来启动谐振动力学,并将定时以导致N?EL向量的电压诱导的完整切换。切换无需电流而发生,从而减少了写入能量以达到每个位范围的atto-joule。 先前仅在铁磁设备的情况下才证明了电压控制的磁各向异性效应。 因此,在反铁磁铁中,它的演示和利用是本提案的关键知识分子之一。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的评估来评估值得支持的。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dynamics of domain-wall motion driven by spin-orbit torque in antiferromagnets
- DOI:10.1103/physrevb.101.014433
- 发表时间:2019-04
- 期刊:
- 影响因子:3.7
- 作者:L. Sánchez-Tejerina;V. Puliafito;P. Amiri;M. Carpentieri;G. Finocchio
- 通讯作者:L. Sánchez-Tejerina;V. Puliafito;P. Amiri;M. Carpentieri;G. Finocchio
Antiferromagnetic Parametric Resonance Driven by Voltage-Controlled Magnetic Anisotropy
- DOI:10.1103/physrevapplied.17.034004
- 发表时间:2022-02
- 期刊:
- 影响因子:4.6
- 作者:R. Tomasello;R. Verba;V. Lopez-Dominguez;F. Garescì;M. Carpentieri;M. Di Ventra;P. Khalili Amiri;G. Finocchio
- 通讯作者:R. Tomasello;R. Verba;V. Lopez-Dominguez;F. Garescì;M. Carpentieri;M. Di Ventra;P. Khalili Amiri;G. Finocchio
Electrical manipulation of the magnetic order in antiferromagnetic PtMn pillars
- DOI:10.1038/s41928-020-0367-2
- 发表时间:2020-02-10
- 期刊:
- 影响因子:34.3
- 作者:Shi, Jiacheng;Lopez-Dominguez, Victor;Amiri, Pedram Khalili
- 通讯作者:Amiri, Pedram Khalili
Domain periodicity in an easy-plane antiferromagnet with Dzyaloshinskii-Moriya interaction
- DOI:10.1103/physrevb.102.224432
- 发表时间:2020-04
- 期刊:
- 影响因子:3.7
- 作者:R. Tomasello;L. Sánchez-Tejerina;V. Lopez-Dominguez;F. Garescì;A. Giordano;M. Carpentieri;P. Amiri;G. Finocchio
- 通讯作者:R. Tomasello;L. Sánchez-Tejerina;V. Lopez-Dominguez;F. Garescì;A. Giordano;M. Carpentieri;P. Amiri;G. Finocchio
Perspectives on field-free spin–orbit torque devices for memory and computing applications
- DOI:10.1063/5.0135185
- 发表时间:2023-01
- 期刊:
- 影响因子:3.2
- 作者:V. Lopez-Dominguez;Yixin Shao;P. Khalili Amiri
- 通讯作者:V. Lopez-Dominguez;Yixin Shao;P. Khalili Amiri
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pedram Khalili Amiri其他文献
A 65-nm ReRAM-Enabled Nonvolatile Processor With Time-Space Domain Adaption and Self-Write-Termination Achieving > 4x Faster Clock Frequency and > 6x Higher Restore Speed
具有时空域适应和自写终止功能的 65 nm ReRAM 非易失性处理器,可实现 > 4 倍更快的时钟频率和 > 6 倍更高的恢复速度
- DOI:
10.1109/jssc.2017.2724024 - 发表时间:
2017 - 期刊:
- 影响因子:5.4
- 作者:
Zhibo Wang;Yongpan Liu;Albert Lee;Fang Su;Chieh-Pu Lo;Zhe Yuan;Jinyang Li;Chien-Chen Lin;Wei-Hao Chen;Hsiao-Yun Chiu;Wei-En Lin;Ya-Chin King;Chrong-Jung Lin;Pedram Khalili Amiri;Kang-Lung Wang;Meng-Fan Chang;Huazhong Yang - 通讯作者:
Huazhong Yang
Large voltage-controlled magnetic anisotropy in the SrTiO3/Fe/Cu structure
SrTiO3/Fe/Cu 结构中的大电压控制磁各向异性
- DOI:
10.1063/1.4996275 - 发表时间:
2017 - 期刊:
- 影响因子:4
- 作者:
Shouzhong Peng;Sai Li;Wang Kang;Jiaqi Zhou;Na Lei;Youguang Zhang;Hongxin Yang;Xiang Li;Pedram Khalili Amiri;Kang L. Wang;Weisheng Zhao - 通讯作者:
Weisheng Zhao
Enhanced broadband RF detection in nanoscale magnetic tunnel junction by interface engineering
通过界面工程增强纳米级磁隧道结的宽带射频检测
- DOI:
10.1021/acsami.9b06706 - 发表时间:
2019 - 期刊:
- 影响因子:9.5
- 作者:
Like Zhang;Bin Fang;Jialin Cai;Weican Wu;Baoshun Zhang;Bochong Wang;Pedram Khalili Amiri;Giovanni Finocchio;Zhongming Zeng - 通讯作者:
Zhongming Zeng
Joule Heating Effect on Field-Free Magnetization Switching by Spin-Orbit Torque in Exchange-Biased Systems
交换偏置系统中自旋轨道扭矩对无场磁化开关的焦耳热效应
- DOI:
10.1103/physrevapplied.7.024023 - 发表时间:
2017-02 - 期刊:
- 影响因子:4.6
- 作者:
Seyed Armin Razavi;Di Wu;Guoqiang Yu;Yong-Chang Lau;Kin L. Wong;Weihua Zhu;Congli He;Zongzhi Zhang;J. M. D. Coey;Plamen Stamenov;Pedram Khalili Amiri;Kang L. Wang - 通讯作者:
Kang L. Wang
Pedram Khalili Amiri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pedram Khalili Amiri', 18)}}的其他基金
FET: Small: CMOS+X: Integration of CMOS and voltage-controlled magnetic tunnel junctions for probabilistic computing
FET:小型:CMOS X:集成 CMOS 和压控磁隧道结,用于概率计算
- 批准号:
2322572 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Verifying Deep Neural Networks with Spintronic Probabilistic Computers
合作研究:SHF:中:使用自旋电子概率计算机验证深度神经网络
- 批准号:
2311296 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Scalable Three Terminal Memory Devices based on Silicon-Compatible Antiferromagnetic Materials
基于硅兼容反铁磁材料的可扩展三端子存储器件
- 批准号:
2203243 - 财政年份:2022
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Spintronic Spectrum Analyzer and Limiter based on Tunable Magnetic Tunnel Junction Arrays
基于可调谐磁隧道结阵列的自旋电子频谱分析仪和限制器
- 批准号:
2203242 - 财政年份:2022
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
PFI-RP: Partnership to develop next-generation memory chips for intelligent computing systems.
PFI-RP:合作开发用于智能计算系统的下一代存储芯片。
- 批准号:
1919109 - 财政年份:2019
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
SBIR Phase I: Electric-Field-Controlled Nonvolatile Magnetic Memory Devices
SBIR 第一阶段:电场控制的非易失性磁存储器件
- 批准号:
1314951 - 财政年份:2013
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
相似国自然基金
miPEP398-miR398诱导亚低温条件下番茄种子活力的机制研究
- 批准号:32372677
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
全基因组关联分析揭示ZmMGT1调控玉米种子活力的功能机理
- 批准号:32372161
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
生物钟核受体Rev-erbα在缺血性卒中神经元能量代谢中的改善作用及机制研究
- 批准号:82371332
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
脐带间充质干细胞微囊联合低能量冲击波治疗神经损伤性ED的机制研究
- 批准号:82371631
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
协同多精度活力测度的高密度城区公园供需评价与调控研究
- 批准号:52308066
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Resilient and Efficient Automatic Control in Energy Infrastructure: An Expert-Guided Policy Optimization Framework
职业:能源基础设施中的弹性和高效自动控制:专家指导的政策优化框架
- 批准号:
2338559 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
ASCENT: Heterogeneously Integrated and AI-Empowered Millimeter-Wave Wide-Bandgap Transmitter Array towards Energy- and Spectrum-Efficient Next-G Communications
ASCENT:异构集成和人工智能支持的毫米波宽带隙发射机阵列,实现节能和频谱高效的下一代通信
- 批准号:
2328281 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343607 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
CAREER: SHF: Bio-Inspired Microsystems for Energy-Efficient Real-Time Sensing, Decision, and Adaptation
职业:SHF:用于节能实时传感、决策和适应的仿生微系统
- 批准号:
2340799 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Collaborative Research: Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
合作研究:用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343606 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant