Extreme Value Theory and Fixed-Domain Asymptotics of Multivariate Random Fields
多元随机场的极值理论和定域渐近
基本信息
- 批准号:1309856
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-01 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The aim of this project is to develop systematic approach to establish novel results and open new research directions on extreme value theory and fixed-domain asymptotics of multivariate random fields. Special emphasis is placed on characterizing cross-dependence structures of Gaussian or non-Gaussian, non-stationary and/or anisotropic multivariate random fields and on studying their effects on extreme value theory and fixed-domain asymptotics. In particular, the Investigator plans to combine his investigation of fractal and differential geometries of multivariate random fields with precise estimation of the excursion probabilities, parameter estimation, prediction and fixed-domain asymptotics of multivariate spatial and spatio-temporal processes. Multivariate random field models are in increasing demand in statistics, geophysics, environment sciences and other scientific areas, where many problems involve data sets with multivariate measurements obtained at spatial locations. Common problems in applications of random field models including parameter estimation, prediction and the determination of threshold level on the random field. It is a major challenge to accurately determine the threshold level when the observations in the random field are correlated in space and time. The Investigator believes that the proposed research project will ultimately yield novel insights into the understanding of multivariate spatial and spatio-temporal models, multivariate extreme value theory, and further promote their applicability in other scientific areas. The proposed activities will also help to identify young talent, to train graduate students and to develop their careers in the mathematical and statistical sciences.
本计画的目的是发展系统的方法,以建立新颖的结果,并在多元随机场的极值理论与固定区域渐近性上开辟新的研究方向。特别强调的是放置在高斯或非高斯,非平稳和/或各向异性的多元随机场的交叉依赖结构的特点,并研究其对极值理论和固定域渐近的影响。特别是,研究计划结合联合收割机他的调查分形和微分几何的多元随机场的精确估计的漂移概率,参数估计,预测和固定域渐近的多元空间和时空过程。多元随机场模型在统计学、物理学、环境科学和其他科学领域中的需求越来越大,其中许多问题涉及在空间位置获得的具有多元测量的数据集。 随机场模型应用中的常见问题,包括随机场的参数估计、预测和阈值水平的确定。当随机场的观测值在空间和时间上是相关的时,如何准确地确定阈值水平是一个重大的挑战。研究者认为,拟议的研究项目将最终产生新的见解,了解多元空间和时空模型,多元极值理论,并进一步促进其在其他科学领域的适用性。 拟议的活动还将有助于发现青年人才,培训研究生,并发展他们在数学和统计科学方面的职业生涯。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yimin Xiao其他文献
Calculation of transient heat transfer through the envelope of an underground cavern using Z-transfer coefficient method
使用 Z 传递系数法计算地下洞穴围护结构的瞬态传热
- DOI:
10.1016/j.enbuild.2012.01.040 - 发表时间:
2012-05 - 期刊:
- 影响因子:6.7
- 作者:
Yimin Xiao;Xichen Liu;Rongrong Zhang - 通讯作者:
Rongrong Zhang
Lower functions and Chung's LILs of the generalized fractional Brownian motion
广义分数布朗运动的下限函数和 Chung 的 LIL
- DOI:
10.1016/j.jmaa.2022.126320 - 发表时间:
2021-05 - 期刊:
- 影响因子:1.3
- 作者:
Ran Wang;Yimin Xiao - 通讯作者:
Yimin Xiao
Hausdorff measure of the graph of fractional Brownian motion
- DOI:
10.1017/s0305004197001783 - 发表时间:
1997-11 - 期刊:
- 影响因子:0.8
- 作者:
Yimin Xiao - 通讯作者:
Yimin Xiao
Propagation of singularities for the stochastic wave equation
随机波动方程的奇点传播
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:1.4
- 作者:
C. Lee;Yimin Xiao - 通讯作者:
Yimin Xiao
Strong Local Nondeterminism and Sample Path Properties of Gaussian Random Fields
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Yimin Xiao - 通讯作者:
Yimin Xiao
Yimin Xiao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yimin Xiao', 18)}}的其他基金
Conference: Workshop on Stochastic Analysis, Random Fields, and Applications
会议:随机分析、随机场和应用研讨会
- 批准号:
2309847 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Analysis and Geometry of Random Fields Related to Stochastic Partial Differential Equations and Random Matrices
与随机偏微分方程和随机矩阵相关的随机场的分析和几何
- 批准号:
2153846 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Seminar on Stochastic Processes (SSP) 2020
随机过程研讨会(SSP)2020
- 批准号:
1951535 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Asymptotic Geometry and Analysis of Stochastic Partial Differential Equations
合作研究:渐近几何与随机偏微分方程分析
- 批准号:
1855185 - 财政年份:2019
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Fractals, Multifractals, and Stochastic Partial Differential Equations
合作研究:分形、多重分形和随机偏微分方程
- 批准号:
1607089 - 财政年份:2016
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Estimation, Prediction, and Extremes of Multivariate Random Fields
多元随机场的估计、预测和极值
- 批准号:
1612885 - 财政年份:2016
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences - Analysis of Stochastic Partial Differential Equations
NSF/CBMS 数学科学区域会议 - 随机偏微分方程分析
- 批准号:
1241389 - 财政年份:2012
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
相似国自然基金
基于时间序列间分位相依性(quantile dependence)的风险值(Value-at-Risk)预测模型研究
- 批准号:71903144
- 批准年份:2019
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Extreme Value Statistics in Probabilistic Number Theory
概率数论中的极值统计
- 批准号:
2153803 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Studies on extreme value theory for strongly correlated random fields
强相关随机场极值理论研究
- 批准号:
22K13927 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Learning at the Edge: an Extreme Value Theory for Visual Recognition
职业:边缘学习:视觉识别的极值理论
- 批准号:
1942151 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Extreme Value Theory Approaches to Insurance in a Catastrophic Environment
灾难环境下保险的极值理论方法
- 批准号:
DP200101859 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Discovery Projects
Statistical learning for multivariate extreme value theory
多元极值理论的统计学习
- 批准号:
2437094 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Studentship
New developments of extreme value theory based on monitoring data and its statistical inference
基于监测数据的极值理论及其统计推断的新进展
- 批准号:
19K04890 - 财政年份:2019
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
FRG: Collaborative Proposal: Extreme Theory Value Theory for Spatially Indexed Functional Data
FRG:协作提案:空间索引函数数据的极端理论价值理论
- 批准号:
1463642 - 财政年份:2015
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Extreme Value Theory for Spatially Indexed Functional Data
FRG:协作研究:空间索引函数数据的极值理论
- 批准号:
1462156 - 财政年份:2015
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Extreme value theory for spatially indexed functional data
FRG:协作研究:空间索引函数数据的极值理论
- 批准号:
1462368 - 财政年份:2015
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Extreme Value Theory: Rogue Waves, Heat Waves, and Cold Waves
极值理论:狂潮、热浪和寒潮
- 批准号:
481944-2015 - 财政年份:2015
- 资助金额:
$ 10万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's














{{item.name}}会员




