Estimation, Prediction, and Extremes of Multivariate Random Fields

多元随机场的估计、预测和极值

基本信息

  • 批准号:
    1612885
  • 负责人:
  • 金额:
    $ 12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2020-06-30
  • 项目状态:
    已结题

项目摘要

Data sets with multivariate measurements obtained at spatial locations are nowadays ubiquitous in many scientific areas, ranging from astronomy, environmental, and ecological sciences to image processing. The need to construct and understand multivariate random fields as models for multivariate spatial or spatio-temporal data has increased dramatically in recent years. However, the development of statistical theory and methodology for multivariate random fields is still in an evolutionary stage and poses substantial challenges. This research project is focused on establishing novel results and opening new research directions in parameter estimation, prediction, and extreme value theory of multivariate random fields. It is anticipated that the results of the work will further promote the applicability of multivariate random field models in statistics and other scientific areas. Moreover, involvement in the research will train graduate students and develop their careers in the mathematical sciences.The research addresses significant questions in statistical inference and extreme value theory of multivariate random fields. Special emphasis is placed on investigating the effects of smoothness/fractal indices and cross-dependence structures of multivariate Gaussian and related random fields on their parameter estimation and prediction under the framework of fixed-domain asymptotics, and on multivariate extreme value theory. Many of the problems under investigation are intrinsically connected with geometric and topological properties of the multivariate random fields. The principal theoretical findings envisaged by this project include simultaneous estimation of multiple parameters and description of their joint performance, prediction under fixed-domain asymptotics, and precise asymptotics for the excursion probabilities, for multivariate Gaussian and related random fields indexed by the Euclidean space or spheres. In previous work, the investigator developed probabilistic and statistical methods for studying multivariate random fields and resolved several outstanding open problems on excursion probabilities, random fractals, Gaussian random fields, Lévy processes, and fractional Lévy random fields. This project aims to yield novel insights into the understanding of multivariate random fields and quantify the influence of their cross dependence structures on the performance of estimators, kriging and co-kriging, and extreme value theory.
在空间位置获得的具有多变量测量的数据集如今在许多科学领域中无处不在,从天文学、环境和生态科学到图像处理。近年来,构建和理解多元随机场作为多元空间或时空数据模型的需求急剧增加。然而,多元随机场统计理论和方法的发展仍处于一个渐进的阶段,并提出了实质性的挑战。本研究计画致力于在多元随机场之参数估计、预测及极值理论等方面建立新的研究成果,并开拓新的研究方向。预计这项工作的成果将进一步促进多元随机场模型在统计学和其他科学领域的适用性。此外,参与研究将培养研究生,并发展他们的职业生涯在mathematicalscience.The研究解决重大问题的统计推断和多元随机场的极值理论。特别强调的是放在调查的光滑性/分形指数和交叉依赖结构的多元高斯和相关的随机场的参数估计和预测的框架下的固定域渐近的影响,和多元极值理论。研究中的许多问题都与多元随机场的几何和拓扑性质有着内在的联系。该项目设想的主要理论研究成果包括多个参数的同时估计和描述其联合性能,固定域渐近下的预测,和精确的渐近的漂移概率,多变量高斯和相关的随机场索引的欧几里得空间或领域。在以前的工作中,研究者开发了研究多元随机场的概率和统计方法,并解决了几个突出的开放问题,如漂移概率,随机分形,高斯随机场,Lévy过程和分数Lévy随机场。该项目旨在对多元随机场的理解产生新的见解,并量化其交叉依赖结构对估计器,克里金和协克里金以及极值理论的性能的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yimin Xiao其他文献

Lower functions and Chung's LILs of the generalized fractional Brownian motion
广义分数布朗运动的下限函数和 Chung 的 LIL
Calculation of transient heat transfer through the envelope of an underground cavern using Z-transfer coefficient method
使用 Z 传递系数法计算地下洞穴围护结构的瞬态传热
  • DOI:
    10.1016/j.enbuild.2012.01.040
  • 发表时间:
    2012-05
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Yimin Xiao;Xichen Liu;Rongrong Zhang
  • 通讯作者:
    Rongrong Zhang
Hausdorff measure of the graph of fractional Brownian motion
Propagation of singularities for the stochastic wave equation
随机波动方程的奇点传播
Strong Local Nondeterminism and Sample Path Properties of Gaussian Random Fields
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yimin Xiao
  • 通讯作者:
    Yimin Xiao

Yimin Xiao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yimin Xiao', 18)}}的其他基金

Conference: Workshop on Stochastic Analysis, Random Fields, and Applications
会议:随机分析、随机场和应用研讨会
  • 批准号:
    2309847
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Analysis and Geometry of Random Fields Related to Stochastic Partial Differential Equations and Random Matrices
与随机偏微分方程和随机矩阵相关的随机场的分析和几何
  • 批准号:
    2153846
  • 财政年份:
    2022
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Seminar on Stochastic Processes (SSP) 2020
随机过程研讨会(SSP)2020
  • 批准号:
    1951535
  • 财政年份:
    2020
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: Asymptotic Geometry and Analysis of Stochastic Partial Differential Equations
合作研究:渐近几何与随机偏微分方程分析
  • 批准号:
    1855185
  • 财政年份:
    2019
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: Fractals, Multifractals, and Stochastic Partial Differential Equations
合作研究:分形、多重分形和随机偏微分方程
  • 批准号:
    1607089
  • 财政年份:
    2016
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Extreme Value Theory and Fixed-Domain Asymptotics of Multivariate Random Fields
多元随机场的极值理论和定域渐近
  • 批准号:
    1309856
  • 财政年份:
    2013
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences - Analysis of Stochastic Partial Differential Equations
NSF/CBMS 数学科学区域会议 - 随机偏微分方程分析
  • 批准号:
    1241389
  • 财政年份:
    2012
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant

相似海外基金

Prediction and predictability of climate extremes
极端气候的预测和可预测性
  • 批准号:
    RGPIN-2018-05255
  • 财政年份:
    2022
  • 资助金额:
    $ 12万
  • 项目类别:
    Discovery Grants Program - Individual
Towards seamless prediction of extremes (TEX) (T02#)
实现极端情况的无缝预测 (TEX) (T02
  • 批准号:
    491370158
  • 财政年份:
    2021
  • 资助金额:
    $ 12万
  • 项目类别:
    CRC/Transregios (Transfer Project)
Prediction and predictability of climate extremes
极端气候的预测和可预测性
  • 批准号:
    RGPIN-2018-05255
  • 财政年份:
    2021
  • 资助金额:
    $ 12万
  • 项目类别:
    Discovery Grants Program - Individual
Prediction and predictability of climate extremes
极端气候的预测和可预测性
  • 批准号:
    RGPIN-2018-05255
  • 财政年份:
    2020
  • 资助金额:
    $ 12万
  • 项目类别:
    Discovery Grants Program - Individual
Prediction and predictability of climate extremes
极端气候的预测和可预测性
  • 批准号:
    RGPIN-2018-05255
  • 财政年份:
    2019
  • 资助金额:
    $ 12万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Dynamics, Thermodynamics, and Microphysics of Extreme Rainfall Observed during PRECIP (Prediction of Rainfall Extremes Campaign In the Pacific)
合作研究:PRECIP(太平洋极端降雨预测活动)期间观测到的极端降雨的动力学、热力学和微观物理学
  • 批准号:
    1854559
  • 财政年份:
    2019
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Collaborative Research: Dynamics, Thermodynamics, and Microphysics of Extreme Rainfall Observed during PRECIP (Prediction of Rainfall Extremes Campaign In the Pacific)
合作研究:PRECIP(太平洋极端降雨预测活动)期间观测到的极端降雨的动力学、热力学和微观物理学
  • 批准号:
    1854607
  • 财政年份:
    2019
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Improving the seasonal prediction of Australian rainfall extremes
改进澳大利亚极端降雨量的季节性预测
  • 批准号:
    DE180100638
  • 财政年份:
    2018
  • 资助金额:
    $ 12万
  • 项目类别:
    Discovery Early Career Researcher Award
Prediction and predictability of climate extremes
极端气候的预测和可预测性
  • 批准号:
    DGECR-2018-00207
  • 财政年份:
    2018
  • 资助金额:
    $ 12万
  • 项目类别:
    Discovery Launch Supplement
Prediction and predictability of climate extremes
极端气候的预测和可预测性
  • 批准号:
    RGPIN-2018-05255
  • 财政年份:
    2018
  • 资助金额:
    $ 12万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了