Fractal Geometry for Dynamics on Random Media
随机介质动力学的分形几何
基本信息
- 批准号:1855550
- 负责人:
- 金额:$ 21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
When a laser pulse is fired into a liquid crystal, causing an unstable region to grow from where the pulse makes contact, or when the stain of an ink blot spreads on paper, interfaces grow in the presence of a locally disordered environment. A central task of the rigorous theory of statistical mechanics is to analyze which features of physical systems are universal, shared by many models with apparently very different microscopic specifications. Understanding of the Kardar-Parisi-Zhang universality class, which concerns many surfaces growing with local randomness, has been greatly advanced by many mathematicians and physicists over the last forty years. Often these advances have been aided by the use of integrable techniques, in which sometimes rather special models are analyzed via algebraic tools or exact formulas. The Principal Investigator will analyze certain important universality classes, including the Kardar-Parisi-Zhang class, by using probabilistic proof methods in unison with limited but crucial integrable inputs. The structure of certain random fractal geometries arising in scaling limits of dynamics on random media will thus be explicated. The proposed probabilistic investigation of fractal geometries has three principal components. The first concerns anomalous transport in disordered random media. Namely, when a particle with a uniform tendency to move in a preferred direction does so in a milieu that is random and strongly disordered, trapping is a vital phenomenon that interrupts and sometimes eliminates linear progress. The phenomenon will be elucidated by a detailed inquiry into biased motion on the infinite cluster of supercritical percolation in the integer lattice of dimensions at least two. The second direction concerns scaled last passage percolation. Rich aspects of Kardar-Parisi-Zhang universality will be explored by studying the scaled random geometry of extremal paths moving through random fields using probabilistic modes of proof such as resampling of random energy profiles and surgery on paths. The final principal component will address noise sensitivity and last passage percolation. The stability and sensitivity of last passage percolation paths under perturbation by noise of the random environment will be studied, strengthening the bridge between two key theories: Kardar-Parisi-Zhang universality and discrete harmonic analysis.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当激光脉冲射入液晶,导致不稳定区域从脉冲接触的地方生长,或者当墨水印迹的污渍在纸上扩散时,界面在局部无序环境的存在下生长。严格统计力学理论的一个中心任务是分析物理系统的哪些特征是普遍的,被许多具有明显差异的微观规范的模型所共有。Kardar-Parisi-Zhang普适性类涉及许多具有局部随机性增长的曲面,在过去的40年里,许多数学家和物理学家已经极大地推进了对它的理解。这些进展往往是通过使用可积技术,其中有时相当特殊的模型分析通过代数工具或精确的公式。主要研究者将分析某些重要的普适类,包括Kardar-Parisi-Zhang类,通过使用概率证明方法与有限但关键的可积输入相结合。因此,在随机介质上的动力学的标度极限中产生的某些随机分形几何的结构将被解释。分形几何的概率研究有三个主要组成部分。第一个是无序随机介质中的反常输运。也就是说,当一个粒子在一个随机的、高度无序的环境中以一种均匀的趋势向一个优选的方向移动时,捕获是一种重要的现象,它会中断甚至消除线性进程。这一现象将阐明了详细的调查偏向运动的无限集团的超临界渗流在整数晶格的尺寸至少为2。第二个方向涉及缩放的最后一个通道渗流。Kardar-Parisi-Zhang普适性的丰富方面将通过研究通过随机场移动的极端路径的缩放随机几何来探索,使用概率模式的证明,例如随机能量分布的恢复和路径上的手术。最后的主成分将解决噪声敏感性和最后一次通过渗透。将研究随机环境噪声扰动下最后一段渗流路径的稳定性和敏感性,加强两个关键理论之间的桥梁:Kardar-Parisi-Zhang普适性和离散谐波分析。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alan Hammond其他文献
Monotone loop models and rational resonance
- DOI:
10.1007/s00440-010-0285-8 - 发表时间:
2010-05-07 - 期刊:
- 影响因子:1.600
- 作者:
Alan Hammond;Richard Kenyon - 通讯作者:
Richard Kenyon
Alan Hammond的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alan Hammond', 18)}}的其他基金
Geometric Probability in Statistical Mechanics and Game Theory
统计力学和博弈论中的几何概率
- 批准号:
2153359 - 财政年份:2022
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Random Motion in Disordered Media: Surface Growth, Ballisticity, and Trapping
无序介质中的随机运动:表面生长、弹道性和捕获
- 批准号:
1512908 - 财政年份:2015
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
RTG: Geometry, Group Actions, and Dynamics at Wisconsin
RTG:威斯康星州的几何、群体行动和动力学
- 批准号:
2230900 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Interactions between geometry, topology, number theory, and dynamics
几何、拓扑、数论和动力学之间的相互作用
- 批准号:
2303572 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Dynamics and Hodge theory: Uniformization and Bialgebraic Geometry
动力学和霍奇理论:均匀化和双代数几何
- 批准号:
2305394 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Geometry and dynamics in moduli spaces of surfaces
表面模空间中的几何和动力学
- 批准号:
2304840 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Arakelov Geometry and Algebraic Dynamics
阿拉克洛夫几何和代数动力学
- 批准号:
2302586 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Conference: I.H.E.S. Workshop: Homogeneous Dynamics and Geometry in Higher-Rank Lie Groups
会议:I.H.E.S.
- 批准号:
2321093 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Equidistribution in Arithmetic: Dynamics, Geometry and Spectra
算术中的均匀分布:动力学、几何和谱
- 批准号:
2302592 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
P2: Geometry of Neural Representations and Dynamics
P2:神经表征和动力学的几何
- 批准号:
10705964 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Teichmueller dynamics and the birational geometry of moduli space
Teichmueller 动力学和模空间双有理几何
- 批准号:
DE220100918 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Discovery Early Career Researcher Award














{{item.name}}会员




