Geometric Probability in Statistical Mechanics and Game Theory

统计力学和博弈论中的几何概率

基本信息

  • 批准号:
    2153359
  • 负责人:
  • 金额:
    $ 27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

This project will develop and employ geometric and probabilistic tools to solve problems in the rigorous theory of statistical mechanics and in game theory on graphs. In many classic games of skill, players move alternately. In random-turn games, however, the players bid to win the right to move and must budget resources in their efforts to win the game. Analyzing such stake-governed random-turn games is a matter of understanding how a precious resource should be budgeted in the long-term in order to maintain strategic advantage; seeking a solution to how to play the game involves capturing the balance needed between the short-term territorial gain of spending big and the long-term cost in diminished capability that arises from such profligacy. Stake-governed random-turn games lie at the intersection of probability and geometry and are one of several directions that the Principal Investigator (PI) will explore in this project. Indeed, techniques from probability and geometry will be also used to address several important physical problems, including how trapping by obstacles impedes a linearly progressing particle, or how random fractals formed as a result of growth in a disordered random environment are sensitive to perturbation of that environment by random disorder. By dissemination, mentorship and collaboration, the PI will seek to ensure that the research enhances the mathematical experience and trajectory of junior researchers including graduate students via joint research to develop fundamental tools, and high-school students via coding projects.The PI will develop robust geometric and probabilistic tools in order to elucidate several problems in the rigorous theory of statistical mechanics and in game theory on graphs. The mechanism of trapping of a biased motion in the supercritical infinite open cluster in the Euclidean lattice will be studied. This work will harness basic tools involving resampling and surgical techniques in the Ornstein-Zernike theory of subcritical lattice models that will be developed under this grant. The fractal structure of scaled universal objects in the Kardar-Parisi-Zhang (KPZ) universality class of models of growth in random media will be studied; as will the sensitivity to noise of scaled KPZ structures. For the latter purpose, tools in discrete harmonic analysis, such as the spectral sample, which have been applied to solve problems in dynamics on critical percolation, will be redeveloped for last passage percolation models. Novel formulas will be proved indicating how skilful players of random-turn games on graphs choose to spend budgets that dictate their local win probabilities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将开发并使用几何和概率工具来解决严格的统计力学理论和图博弈论中的问题。在许多经典的技巧游戏中,玩家都是交替移动的。然而,在随机回合游戏中,玩家竞价赢得移动权,并且必须预算资源以赢得游戏。分析这种由权益控制的随机回合博弈需要了解如何长期预算宝贵的资源以保持战略优势;寻求如何玩这个游戏的解决方案涉及到在大笔支出所带来的短期领土收益与这种挥霍造成的能力削弱的长期成本之间取得所需的平衡。权益控制的随机回合游戏位于概率和几何的交叉点,是首席研究员 (PI) 将在该项目中探索的几个方向之一。事实上,概率和几何技术也将用于解决几个重要的物理问题,包括障碍物的捕获如何阻碍线性前进的粒子,或者由于在无序随机环境中生长而形成的随机分形如何对随机无序对该环境的扰动敏感。通过传播、指导和协作,PI 将寻求确保该研究增强初级研究人员的数学经验和轨迹,包括通过联合研究开发基础工具的研究生和通过编码项目的高中生。PI 将开发强大的几何和概率工具,以阐明严格的统计力学理论和图博弈论中的几个问题。 将研究欧几里德晶格中超临界无限疏散团簇中偏置运动的俘获机制。这项工作将利用亚临界晶格模型 Ornstein-Zernike 理论中涉及重采样和手术技术的基本工具,这些工具将在本次资助下开发。 将研究随机介质生长模型的 Kardar-Parisi-Zhang (KPZ) 普适类中缩放普适对象的分形结构;缩放 KPZ 结构对噪声的敏感性也是如此。对于后一个目的,离散谐波分析工具,例如已应用于解决临界渗流动力学问题的光谱样本,将针对最后通道渗流模型进行重新开发。将证明新颖的公式,表明图表上随机回合游戏的熟练玩家如何选择花费决定其本地获胜概率的预算。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alan Hammond其他文献

Monotone loop models and rational resonance
  • DOI:
    10.1007/s00440-010-0285-8
  • 发表时间:
    2010-05-07
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Alan Hammond;Richard Kenyon
  • 通讯作者:
    Richard Kenyon

Alan Hammond的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alan Hammond', 18)}}的其他基金

Fractal Geometry for Dynamics on Random Media
随机介质动力学的分形几何
  • 批准号:
    1855550
  • 财政年份:
    2019
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Random Motion in Disordered Media: Surface Growth, Ballisticity, and Trapping
无序介质中的随机运动:表面生长、弹道性和捕获
  • 批准号:
    1512908
  • 财政年份:
    2015
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Probability and Mathematical Statistical Mechanics
职业:概率和数学统计力学
  • 批准号:
    2238423
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Noncommutative statistical mechanics: probability at the confluence
非交换统计力学:汇合处的概率
  • 批准号:
    EP/V048902/2
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Research Grant
Probability learning and statistical inference in infancy and early childhood
婴儿期和幼儿期的概率学习和统计推断
  • 批准号:
    RGPIN-2020-04472
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Discovery Grants Program - Individual
Probability learning and statistical inference in infancy and early childhood
婴儿期和幼儿期的概率学习和统计推断
  • 批准号:
    RGPIN-2020-04472
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
    Discovery Grants Program - Individual
Imprecise Probability and Valid Statistical Inference
不精确的概率和有效的统计推断
  • 批准号:
    2051225
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Noncommutative statistical mechanics: probability at the confluence
非交换统计力学:汇合处的概率
  • 批准号:
    EP/V048902/1
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
    Research Grant
Probability learning and statistical inference in infancy and early childhood
婴儿期和幼儿期的概率学习和统计推断
  • 批准号:
    RGPIN-2020-04472
  • 财政年份:
    2020
  • 资助金额:
    $ 27万
  • 项目类别:
    Discovery Grants Program - Individual
The method to determine the probability of disease severity by bayesian statistical analysis in a small number of patient data.
通过对少量患者数据进行贝叶斯统计分析来确定疾病严重程度概率的方法。
  • 批准号:
    20K12716
  • 财政年份:
    2020
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
High-dimensional probability in ergodic theory and statistical physics
遍历理论和统计物理中的高维概率
  • 批准号:
    1855694
  • 财政年份:
    2019
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
RI: Small: Print and Probability - A Statistical Approach to Analysis of Clandestine Publication
RI:小:印刷品和概率 - 秘密出版物分析的统计方法
  • 批准号:
    1936155
  • 财政年份:
    2019
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了