D3SC: Discovery and Optimization of Chiral Catalysts Guided by Chemoinformatics
D3SC:化学信息学引导的手性催化剂的发现和优化
基本信息
- 批准号:1900617
- 负责人:
- 金额:$ 48.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With this award, the Chemical Catalysis Program of the NSF Division of Chemistry is supporting the research of Professor Scott E. Denmark of the Department of Chemistry at the University of Illinois at Urbana-Champaign. Professor Denmark is developing a new paradigm for the development of catalysts that combines the creative power of "diversity-oriented synthesis" with the computational power of informatics. Under the data-driven discovery science in Chemistry (D3SC) initiative, the foundation of this program is the invention and implementation of high-resolution descriptors that are able to accurately reflect the chemical properties of molecules in a form that is readable by a computer. The current state of the art is insufficient to provide the level of granularity needed to assure that the properties of computer generated libraries of hypothetical catalysts are accurate reflections of the true character of the molecules. Most importantly, however, the development of a truly general, computationally guided workflow for the optimization of molecular function can impact the entire spectrum of chemical properties from optimizing the performance of functional materials (sensors, LEDs, adhesives, energy storage systems, etc.) to the discovery and optimization of catalysts for industrially relevant chemical processes.The goals of this proposal are summarized in the basic components of a discovery oriented program that combines computational analysis with experimentation, namely: (1) in-silico generation of a massive library of hypothetical catalyst structures based on a given scaffold followed by calculation of descriptors of each library member, (2) diversity analysis to generate representative "training set", (3) synthesis of training set, (4) evaluation of the training set in a given reaction, (5) development and validation of a mathematical model that correlates empirical output with molecular properties (6) application of that model to the virtual library of catalysts, (7) synthesis and evaluation of best predicted catalysts, and (8) repeat steps 4-8 until desired output is achieved. Great potential exists for 3D-Quantitative Structure Selectivity Relationship (3D-QSSR) modeling to impact asymmetric catalysis, not only by identifying high performance catalyst structures, but also by providing a new framework to elucidate the structural features that govern the activity and enantioselectivity of catalysts for any given chemical transformation. Most importantly, this framework should be universally applicable to the optimization of any kind of molecular property or function. These activities are ideal for the intellectual and practical training of graduate students and postdoctoral coworkers. The interplay of theory and experiment is the essence of the scientific method. Students are presented with hypotheses for the outcome of planned experiments and they must learn to collect and interpret data to substantiate or eliminate the hypothesis. They also become expert synthetic chemists, proficient scientific programmers, and competent in computational chemistry, data-science, and machine learning. The unifying theme of this activity is the development of a computationally guided workflow that leads to the creation of universally applicable training sets of molecules that can be used to optimize myriad chemical reactions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
有了这个奖项,美国国家科学基金会化学部的化学催化项目支持了斯科特·E。伊利诺伊大学香槟分校化学系的丹麦。丹麦教授正在开发一种新的催化剂开发模式,将“多样性导向的综合”的创造力与信息学的计算能力结合起来。在数据驱动的化学发现科学(D3 SC)计划下,该计划的基础是发明和实施高分辨率描述符,这些描述符能够以计算机可读的形式准确反映分子的化学性质。现有技术不足以提供所需的粒度水平,以确保计算机生成的假想催化剂库的性质准确反映分子的真实特征。然而,最重要的是,开发一个真正通用的、计算指导的工作流程来优化分子功能,可以通过优化功能材料(传感器、LED、粘合剂、储能系统等)的性能来影响整个化学性质谱。发现和优化工业相关化学过程的催化剂。该提案的目标总结在一个发现导向计划的基本组成部分,该计划将计算分析与实验相结合,即:(1)基于给定的支架计算机生成假设催化剂结构的大量库,然后计算每个库成员的描述符,(2)多样性分析以产生代表性的“训练集”,(3)训练集的合成,(4)给定反应中训练集的评价,(5)将经验输出与分子性质相关联的数学模型的开发和验证,(6)将该模型应用于催化剂的虚拟库,(7)最佳预测催化剂的合成和评价,和(8)重复步骤4-8直到获得所需的输出。三维定量结构选择性关系(3D-QSSR)建模不仅通过识别高性能催化剂结构,而且通过提供新的框架来阐明控制催化剂对任何给定化学转化的活性和对映选择性的结构特征,从而影响不对称催化,存在巨大的潜力。最重要的是,这个框架应该普遍适用于任何类型的分子性质或功能的优化。这些活动是理想的研究生和博士后同事的智力和实践培训。理论与实验的相互作用是科学方法的本质。学生提出了假设的结果计划实验,他们必须学会收集和解释数据,以证实或消除假设。他们也成为专家合成化学家,精通科学程序员,并在计算化学,数据科学和机器学习能力。这项活动的统一主题是开发一个计算指导的工作流程,从而创建可用于优化无数化学反应的普遍适用的分子训练集。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cautionary Guidelines for Machine Learning Studies with Combinatorial Datasets
组合数据集机器学习研究的警示指南
- DOI:10.1021/acscombsci.0c00118
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Zahrt, Andrew F.;Henle, Jeremy J.;Denmark, Scott E.
- 通讯作者:Denmark, Scott E.
Leveraging Machine Learning for Enantioselective Catalysis: From Dream to Reality
利用机器学习进行对映选择性催化:从梦想到现实
- DOI:10.2533/chimia.2021.592
- 发表时间:2021
- 期刊:
- 影响因子:1.2
- 作者:Rinehart, N. Ian;Zahrt, Andrew F.;Denmark, Scott
- 通讯作者:Denmark, Scott
A Unified Strategy for the Asymmetric Synthesis of Highly Substituted 1,2-Amino Alcohols Leading to Highly Substituted Bisoxazoline Ligands.
高度取代的 1,2-氨基醇的不对称合成导致高度取代的双恶唑啉配体的统一策略。
- DOI:10.1021/acs.joc.0c02899
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Shrestha,Bijay;Rose,BrennanT;Olen,CaseyL;Roth,Aaron;Kwong,AdonC;Wang,Yang;Denmark,ScottE
- 通讯作者:Denmark,ScottE
A Conformer‐Dependent, Quantitative Quadrant Model
符合者 - 相关定量象限模型
- DOI:10.1002/ejoc.202100027
- 发表时间:2021
- 期刊:
- 影响因子:2.8
- 作者:Zahrt, Andrew F.;Rinehart, N. Ian;Denmark, Scott E.
- 通讯作者:Denmark, Scott E.
Development of a Computer-Guided Workflow for Catalyst Optimization. Descriptor Validation, Subset Selection, and Training Set Analysis
- DOI:10.1021/jacs.0c04715
- 发表时间:2020-07-01
- 期刊:
- 影响因子:15
- 作者:Henle, Jeremy J.;Zahrt, Andrew F.;Denmark, Scott E.
- 通讯作者:Denmark, Scott E.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Scott Denmark其他文献
Scott Denmark的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Scott Denmark', 18)}}的其他基金
Discovery and Optimization of Enantioselective Catalysts Guided by Informatics and Machine Learning
信息学和机器学习引导的对映选择性催化剂的发现和优化
- 批准号:
2154237 - 财政年份:2022
- 资助金额:
$ 48.5万 - 项目类别:
Continuing Grant
Leveraging Main-Group Redox Catalysis for Enantioselective Alkene Difunctionalization
利用主族氧化还原催化进行对映选择性烯烃双官能化
- 批准号:
2102232 - 财政年份:2021
- 资助金额:
$ 48.5万 - 项目类别:
Continuing Grant
Catalytic, Enantioselective Dihalogenation of Alkenes
烯烃的催化对映选择性二卤化
- 批准号:
1664376 - 财政年份:2017
- 资助金额:
$ 48.5万 - 项目类别:
Continuing Grant
EAGER: SusChEM: Carbon-Carbon Bond Formation Driven By the Water-Gas Shift Reaction
EAGER:SusChEM:水煤气变换反应驱动的碳-碳键形成
- 批准号:
1649579 - 财政年份:2016
- 资助金额:
$ 48.5万 - 项目类别:
Standard Grant
Organosilanols as Universal Donors in Organometallic Chemistry
有机硅烷醇作为有机金属化学中的通用供体
- 批准号:
1151566 - 财政年份:2012
- 资助金额:
$ 48.5万 - 项目类别:
Continuing Grant
Acquisition of Equipment for High-Throughput Experimentation
购置高通量实验设备
- 批准号:
1048545 - 财政年份:2011
- 资助金额:
$ 48.5万 - 项目类别:
Standard Grant
Asymmetric Catalysis with Chiral Lewis Bases
手性路易斯碱的不对称催化
- 批准号:
1012663 - 财政年份:2010
- 资助金额:
$ 48.5万 - 项目类别:
Continuing Grant
Asymmetric Catalysis in Main Group Chemistry with Chiral Lewis Bases
手性路易斯碱主族化学中的不对称催化
- 批准号:
0717989 - 财政年份:2007
- 资助金额:
$ 48.5万 - 项目类别:
Continuing Grant
Asymmetric Nucleophilic Catalysis with Chiral Lewis Bases
手性路易斯碱的不对称亲核催化
- 批准号:
0414440 - 财政年份:2004
- 资助金额:
$ 48.5万 - 项目类别:
Continuing Grant
Asymmetric Catalysis with Chiral Lewis Bases
手性路易斯碱的不对称催化
- 批准号:
0105205 - 财政年份:2001
- 资助金额:
$ 48.5万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: Holistic Distributed Resource Management and Discovery via Augmented Learning and Robust Optimization
职业:通过增强学习和鲁棒优化进行整体分布式资源管理和发现
- 批准号:
2339243 - 财政年份:2024
- 资助金额:
$ 48.5万 - 项目类别:
Continuing Grant
Accelerating drug discovery via ML-guided iterative design and optimization
通过机器学习引导的迭代设计和优化加速药物发现
- 批准号:
10552325 - 财政年份:2023
- 资助金额:
$ 48.5万 - 项目类别:
Metagenomic discovery and optimization of novel endolysins targeting Cutibacterium acnes to treat acne vulgaris
针对痤疮皮肤杆菌治疗寻常痤疮的新型内溶素的宏基因组发现和优化
- 批准号:
10821291 - 财政年份:2023
- 资助金额:
$ 48.5万 - 项目类别:
CAREER: Scalable Black-box Optimization for Scientific Discovery
职业:科学发现的可扩展黑盒优化
- 批准号:
2145644 - 财政年份:2022
- 资助金额:
$ 48.5万 - 项目类别:
Standard Grant
GOALI: High Throughput Discovery and Optimization of Photochemical Reactions
GOALI:光化学反应的高通量发现和优化
- 批准号:
2154668 - 财政年份:2022
- 资助金额:
$ 48.5万 - 项目类别:
Continuing Grant
Discovery and Optimization of Inhibitors of SARS-CoV-2 Polymerase and Exonuclease
SARS-CoV-2聚合酶和核酸外切酶抑制剂的发现和优化
- 批准号:
10513924 - 财政年份:2022
- 资助金额:
$ 48.5万 - 项目类别:
Discovery and Optimization of Enantioselective Catalysts Guided by Informatics and Machine Learning
信息学和机器学习引导的对映选择性催化剂的发现和优化
- 批准号:
2154237 - 财政年份:2022
- 资助金额:
$ 48.5万 - 项目类别:
Continuing Grant
Machine learning approaches for the discovery, repurposing, and optimization of natural products with therapeutic potential
用于发现、重新利用和优化具有治疗潜力的天然产物的机器学习方法
- 批准号:
10693375 - 财政年份:2022
- 资助金额:
$ 48.5万 - 项目类别:
CAREER: Optimization-Based Computational Discovery of Decision-Making Processes
职业:基于优化的决策过程计算发现
- 批准号:
2044077 - 财政年份:2021
- 资助金额:
$ 48.5万 - 项目类别:
Continuing Grant
Automated Discovery and Optimization of Sequence-based Biomarkers
基于序列的生物标志物的自动发现和优化
- 批准号:
565546-2021 - 财政年份:2021
- 资助金额:
$ 48.5万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's