Collaborative Research: SCH: Fair Federated Representation Learning for Breast Cancer Risk Scoring
合作研究:SCH:乳腺癌风险评分的公平联合表示学习
基本信息
- 批准号:2205080
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
With the availability of electronic health records (EHRs) in hospitals and clinics, powerful machine learning models can be developed to support precision population health and clinical decision-making tasks such as disease detection, outcome prediction, and treatment recommendation. This project creates a machine learning framework for training models across hospitals and new tools for incorporating fairness into distributed machine learning. The project will embed these algorithmic innovations to evaluate their applicability to real-world precision population health with a primary focus on addressing screening and treatment disparities in breast cancer, along with additional evaluation for various healthcare applications. This project will conclude with collaborative development and deployment across multiple academic and medical institutions and will include curriculum development on fairness in machine learning and federated machine learning. This project also plans to involve participation by graduate students from underrepresented groups.This project will focus on representation learning approaches for training EHR models, where embedding vectors can be trained with deep learning models to represent clinical concepts (e.g., diagnoses and medications) and patient data. The resulting embedding vectors can be input to the downstream applications, such as breast cancer risk scoring. This project creates a transformative new direction for addressing fairness in machine learning for healthcare by addressing the challenges of mitigating model and data biases. The first challenge is modeling bias, as most representation learning algorithms in healthcare do not consider any fairness measures, which can lead to biased embeddings. To this end, this project develops a fair representation learning algorithm that can be adapted to various fairness metrics. The second challenge is data bias, as the distributed nature of the data limits both the downstream equity and generalization performance of the resulting embedding vectors. This project addresses data bias using a new fair federated representation learning framework to learn representations that satisfy fairness criteria by training jointly across multiple sites without sharing patient data. In addition to developing the algorithmic and theoretical frameworks for these directions, this project will also build and release open software.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着医院和诊所中电子健康记录(EHR)的可用性,可以开发强大的机器学习模型来支持精确的人群健康和临床决策任务,如疾病检测,结果预测和治疗建议。该项目创建了一个用于跨医院训练模型的机器学习框架,以及将公平性纳入分布式机器学习的新工具。该项目将嵌入这些算法创新,以评估其对现实世界精确人群健康的适用性,主要关注乳腺癌筛查和治疗差异,沿着对各种医疗保健应用的额外评估。该项目将以跨多个学术和医疗机构的协作开发和部署结束,并将包括关于机器学习和联合机器学习公平性的课程开发。该项目还计划让来自代表性不足群体的研究生参与。该项目将专注于用于训练EHR模型的表示学习方法,其中嵌入向量可以使用深度学习模型进行训练以表示临床概念(例如,诊断和药物)和患者数据。得到的嵌入向量可以输入到下游应用程序,例如乳腺癌风险评分。该项目通过解决减轻模型和数据偏差的挑战,为解决医疗保健机器学习的公平性创造了一个变革性的新方向。第一个挑战是建模偏差,因为医疗保健中的大多数表示学习算法不考虑任何公平性度量,这可能导致有偏见的嵌入。为此,该项目开发了一种公平表示学习算法,可以适应各种公平性度量。第二个挑战是数据偏差,因为数据的分布式性质限制了所得到的嵌入向量的下游公平性和泛化性能。该项目使用新的公平联邦表示学习框架来解决数据偏差问题,通过在多个站点之间联合训练来学习满足公平标准的表示,而无需共享患者数据。除了为这些方向开发算法和理论框架外,该项目还将构建和发布开放软件。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Operational Approach to Information Leakage via Generalized Gain Functions
通过广义增益函数处理信息泄漏的操作方法
- DOI:10.1109/tit.2023.3341148
- 发表时间:2024
- 期刊:
- 影响因子:2.5
- 作者:Kurri, Gowtham R.;Sankar, Lalitha;Kosut, Oliver
- 通讯作者:Kosut, Oliver
Smoothly Giving up: Robustness for Simple Models
- DOI:10.48550/arxiv.2302.09114
- 发表时间:2023-02
- 期刊:
- 影响因子:0
- 作者:Tyler Sypherd;Nathan Stromberg;R. Nock;Visar Berisha;L. Sankar
- 通讯作者:Tyler Sypherd;Nathan Stromberg;R. Nock;Visar Berisha;L. Sankar
An Alphabet of Leakage Measures
泄漏测量字母表
- DOI:10.1109/itw54588.2022.9965918
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Gilani, Atefeh;Kurri, Gowtham R.;Kosut, Oliver;Sankar, Lalitha
- 通讯作者:Sankar, Lalitha
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lalitha Sankar其他文献
Label Noise Robustness for Domain-Agnostic Fair Corrections via Nearest Neighbors Label Spreading
通过最近邻标签传播实现与域无关的公平校正的标签噪声鲁棒性
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Nathan Stromberg;Rohan Ayyagari;Sanmi Koyejo;Richard Nock;Lalitha Sankar - 通讯作者:
Lalitha Sankar
Last Iterate Convergence of Popov Method for Non-monotone Stochastic Variational Inequalities
非单调随机变分不等式波波夫方法的最后迭代收敛
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Daniil Vankov;A. Nedich;Lalitha Sankar - 通讯作者:
Lalitha Sankar
Lalitha Sankar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lalitha Sankar', 18)}}的其他基金
Exploiting Physical and Dynamical Structures for Real-time Inference in Electric Power Systems
利用物理和动态结构进行电力系统实时推理
- 批准号:
2246658 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Unifying Information- and Optimization-Theoretic Approaches for Modeling and Training Generative Adversarial Networks
统一信息理论和优化理论方法来建模和训练生成对抗网络
- 批准号:
2134256 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
RAPID: SaTC: FACT: Federated Analytics based Contact Tracing for COVID-19
RAPID:SaTC:事实:基于联合分析的 COVID-19 接触者追踪
- 批准号:
2031799 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CIF: Small: Alpha Loss: A New Framework for Understanding and Trading Off Computation, Accuracy, and Robustness in Machine Learning
CIF:小:Alpha 损失:理解和权衡机器学习中的计算、准确性和鲁棒性的新框架
- 批准号:
2007688 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Student Travel Support for the 2020 IEEE SGComm Conference. To be Held November, 11-13, 2020 at Arizona State University.
2020 年 IEEE SGComm 会议的学生旅行支持。
- 批准号:
2024805 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CIF: Medium: Collaborative Research: Information-theoretic Guarantees on Privacy in the Age of Learning
CIF:媒介:协作研究:学习时代隐私的信息理论保证
- 批准号:
1901243 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: High-Dimensional Spatio-Temporal Data Science for a Resilient Power Grid: Towards Real-Time Integration of Synchrophasor Data
合作研究:弹性电网的高维时空数据科学:同步相量数据的实时集成
- 批准号:
1934766 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CIF: Small: Collaborative Research: Generative Adversarial Privacy: A Data-driven Approach to Guaranteeing Privacy and Utility
CIF:小型:协作研究:生成对抗性隐私:保证隐私和实用性的数据驱动方法
- 批准号:
1815361 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CPS: TTP Option: Synergy: A Verifiable Framework for Cyber- Physical Attacks and Countermeasures in a Resilient Electric Power Grid
CPS:TTP 选项:协同:弹性电网中网络物理攻击和对策的可验证框架
- 批准号:
1449080 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Cooperative Agreement
CAREER: Privacy-Guaranteed Distributed Interactions in Critical Infrastructure Networks
职业:关键基础设施网络中保证隐私的分布式交互
- 批准号:
1350914 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SCH: Improving Older Adults' Mobility and Gait Ability in Real-World Ambulation with a Smart Robotic Ankle-Foot Orthosis
合作研究:SCH:使用智能机器人踝足矫形器提高老年人在现实世界中的活动能力和步态能力
- 批准号:
2306660 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: SCH: A wireless optoelectronic implant for closed-loop control of bi-hormone secretion from genetically modified islet organoid grafts
合作研究:SCH:一种无线光电植入物,用于闭环控制转基因胰岛类器官移植物的双激素分泌
- 批准号:
2306708 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: SCH: AI-driven RFID Sensing for Smart Health Applications
合作研究:SCH:面向智能健康应用的人工智能驱动的 RFID 传感
- 批准号:
2306790 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: SCH: Improving Older Adults' Mobility and Gait Ability in Real-World Ambulation with a Smart Robotic Ankle-Foot Orthosis
合作研究:SCH:使用智能机器人踝足矫形器提高老年人在现实世界中的活动能力和步态能力
- 批准号:
2306659 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: SCH: Therapeutic and Diagnostic System for Inflammatory Bowel Diseases: Integrating Data Science, Synthetic Biology, and Additive Manufacturing
合作研究:SCH:炎症性肠病的治疗和诊断系统:整合数据科学、合成生物学和增材制造
- 批准号:
2306740 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: SCH: Psychophysiological sensing to enhance mindfulness-based interventions for self-regulation of opioid cravings
合作研究:SCH:心理生理学传感,以增强基于正念的干预措施,以自我调节阿片类药物的渴望
- 批准号:
2320678 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: SCH: Therapeutic and Diagnostic System for Inflammatory Bowel Diseases: Integrating Data Science, Synthetic Biology, and Additive Manufacturing
合作研究:SCH:炎症性肠病的治疗和诊断系统:整合数据科学、合成生物学和增材制造
- 批准号:
2306738 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: SCH: AI-driven RFID Sensing for Smart Health Applications
合作研究:SCH:面向智能健康应用的人工智能驱动的 RFID 传感
- 批准号:
2306792 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: SCH: Therapeutic and Diagnostic System for Inflammatory Bowel Diseases: Integrating Data Science, Synthetic Biology, and Additive Manufacturing
合作研究:SCH:炎症性肠病的治疗和诊断系统:整合数据科学、合成生物学和增材制造
- 批准号:
2306739 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: SCH: A wireless optoelectronic implant for closed-loop control of bi-hormone secretion from genetically modified islet organoid grafts
合作研究:SCH:一种无线光电植入物,用于闭环控制转基因胰岛类器官移植物的双激素分泌
- 批准号:
2306709 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant