Unifying Information- and Optimization-Theoretic Approaches for Modeling and Training Generative Adversarial Networks

统一信息理论和优化理论方法来建模和训练生成对抗网络

基本信息

  • 批准号:
    2134256
  • 负责人:
  • 金额:
    $ 110万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

The success of modern machine learning (ML) is driven by copious amounts of data needed to learn complex predictive models. However, the lack of publicly available data to develop and test ML algorithms has large societal implications including unverifiable concerns of algorithmic bias in blackbox models. The need for public datasets is even stronger for critical systems such as the electric grid where realistic datasets are essential for both real-time decision-making and robust long-term planning. Synthetic data promises a secure and consistent way to develop ML algorithms; yet, developing principled methods to generate synthetic data with guarantees on learning the data distribution continues to be an open problem. Generative adversarial networks (GANs) have emerged as an effective deep learning approach for generating synthetic data. GANs involve two modules, modeled in practice as deep neural networks: a generator of synthetic samples, and a discriminator which classifies inputs to it as real or fake. The opposing goals of the two modules yields a minimum-maximum (min-max) game. Despite their success, GANs are difficult to train due to a range of instability problems, non-convergence, and mode collapse. The educational component trains graduate students, postdocs, and undergraduates, particularly from underrepresented minority groups (via an Arizona State University Summer Undergraduate Research Initiative) across electrical engineering, computer science, and statistics to emerging challenges in data science and machine learning.This project develops a unified information- and optimization-theoretic framework to address these challenges, leveraging information theory, optimization and game theory, Bayesian methods, and stochastic sequential search techniques. Connections between vanishing gradients and GAN loss functions is addressed via a loss function-based tunable framework for GANs that recovers several oft-used GANs. The project tackles GAN optimization problems in two novel ways: (i) establishing existence of solutions for a general class of nonconvex and functional min-max problems; and (ii) introducing a unifying variational inequality (VI) framework to systematically solve deterministic and stochastic VI problems, including min-max GANs. The project addresses mode collapse by training GANs with Bayesian priors on generator and discriminator parameters. A key novelty of this approach is in identifying the role of latent space on mode collapse using an inverse problem methodology. Finally, the project applies and evaluates the proposed approaches to training tunable GANs and develops a stochastic sequential search algorithm to assure global optimality of trained GANs. Theoretical results are evaluated using both public and proprietary datasets.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代机器学习(ML)的成功是由学习复杂预测模型所需的大量数据推动的。然而,缺乏公开可用的数据来开发和测试ML算法具有巨大的社会影响,包括对黑盒模型中算法偏差的不可证实的担忧。对于电网等关键系统来说,对公共数据集的需求更加强烈,在这些系统中,现实的数据集对于实时决策和稳健的长期规划都是必不可少的。合成数据承诺以安全和一致的方式开发ML算法;然而,开发有原则的方法来生成合成数据并保证了解数据分布仍然是一个悬而未决的问题。生成性对抗网络(GANS)已经成为生成合成数据的一种有效的深度学习方法。GANS涉及两个模块,在实践中被建模为深度神经网络:一个是合成样本的生成器,另一个是辨别器,它将输入的样本分类为真或假。两个模块的相对目标产生了一个最小-最大(MIN-MAX)博弈。尽管他们取得了成功,但由于一系列不稳定问题、不收敛和模式崩溃,GAN很难训练。教育部分培训研究生、博士后和本科生,特别是来自代表不足的少数群体(通过亚利桑那州立大学夏季本科生研究计划)的学生,涉及电气工程、计算机科学和统计学,以应对数据科学和机器学习中的新挑战。该项目开发了一个统一的信息和优化理论框架来应对这些挑战,利用信息论、优化和博弈论、贝叶斯方法和随机顺序搜索技术。通过恢复几种常用GaN的基于损耗函数的GaN可调框架,解决了消失梯度和GaN损失函数之间的联系。该项目以两种新颖的方式处理GAN优化问题:(I)建立一类一般的非凸函数极大极小问题解的存在性;(Ii)引入统一变分不等式(VI)框架来系统地解决确定性和随机VI问题,包括极小极大Gans问题。该项目通过训练具有贝叶斯先验的生成器和鉴别器参数的GAN来解决模式崩溃问题。这种方法的一个关键创新之处在于,使用反问题方法确定了潜在空间在模式崩溃中的作用。最后,该项目应用和评估了所提出的训练可调遗传算法的方法,并开发了一种随机序列搜索算法来确保训练的遗传算法的全局最优性。理论结果使用公共和专有数据集进行评估。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Operational Approach to Information Leakage via Generalized Gain Functions
通过广义增益函数处理信息泄漏的操作方法
  • DOI:
    10.1109/tit.2023.3341148
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Kurri, Gowtham R.;Sankar, Lalitha;Kosut, Oliver
  • 通讯作者:
    Kosut, Oliver
Being Properly Improper
  • DOI:
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Nock;Tyler Sypherd;L. Sankar
  • 通讯作者:
    R. Nock;Tyler Sypherd;L. Sankar
α-GAN: Convergence and Estimation Guarantees
α-GAN:收敛和估计保证
Realizing GANs via a Tunable Loss Function
  • DOI:
    10.1109/itw48936.2021.9611499
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gowtham R. Kurri;Tyler Sypherd;L. Sankar
  • 通讯作者:
    Gowtham R. Kurri;Tyler Sypherd;L. Sankar
Bayesian spatiotemporal modeling for inverse problems
  • DOI:
    10.1007/s11222-023-10253-z
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Shiwei Lan;Shuyi Li;M. Pasha
  • 通讯作者:
    Shiwei Lan;Shuyi Li;M. Pasha
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lalitha Sankar其他文献

Label Noise Robustness for Domain-Agnostic Fair Corrections via Nearest Neighbors Label Spreading
通过最近邻标签传播实现与域无关的公平校正的标签噪声鲁棒性
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nathan Stromberg;Rohan Ayyagari;Sanmi Koyejo;Richard Nock;Lalitha Sankar
  • 通讯作者:
    Lalitha Sankar
Last Iterate Convergence of Popov Method for Non-monotone Stochastic Variational Inequalities
非单调随机变分不等式波波夫方法的最后迭代收敛
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniil Vankov;A. Nedich;Lalitha Sankar
  • 通讯作者:
    Lalitha Sankar

Lalitha Sankar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lalitha Sankar', 18)}}的其他基金

Exploiting Physical and Dynamical Structures for Real-time Inference in Electric Power Systems
利用物理和动态结构进行电力系统实时推理
  • 批准号:
    2246658
  • 财政年份:
    2023
  • 资助金额:
    $ 110万
  • 项目类别:
    Standard Grant
Collaborative Research: SCH: Fair Federated Representation Learning for Breast Cancer Risk Scoring
合作研究:SCH:乳腺癌风险评分的公平联合表示学习
  • 批准号:
    2205080
  • 财政年份:
    2022
  • 资助金额:
    $ 110万
  • 项目类别:
    Standard Grant
RAPID: SaTC: FACT: Federated Analytics based Contact Tracing for COVID-19
RAPID:SaTC:事实:基于联合分析的 COVID-19 接触者追踪
  • 批准号:
    2031799
  • 财政年份:
    2020
  • 资助金额:
    $ 110万
  • 项目类别:
    Standard Grant
CIF: Small: Alpha Loss: A New Framework for Understanding and Trading Off Computation, Accuracy, and Robustness in Machine Learning
CIF:小:Alpha 损失:理解和权衡机器学习中的计算、准确性和鲁棒性的新框架
  • 批准号:
    2007688
  • 财政年份:
    2020
  • 资助金额:
    $ 110万
  • 项目类别:
    Standard Grant
Student Travel Support for the 2020 IEEE SGComm Conference. To be Held November, 11-13, 2020 at Arizona State University.
2020 年 IEEE SGComm 会议的学生旅行支持。
  • 批准号:
    2024805
  • 财政年份:
    2020
  • 资助金额:
    $ 110万
  • 项目类别:
    Standard Grant
CIF: Medium: Collaborative Research: Information-theoretic Guarantees on Privacy in the Age of Learning
CIF:媒介:协作研究:学习时代隐私的信息理论保证
  • 批准号:
    1901243
  • 财政年份:
    2019
  • 资助金额:
    $ 110万
  • 项目类别:
    Continuing Grant
Collaborative Research: High-Dimensional Spatio-Temporal Data Science for a Resilient Power Grid: Towards Real-Time Integration of Synchrophasor Data
合作研究:弹性电网的高维时空数据科学:同步相量数据的实时集成
  • 批准号:
    1934766
  • 财政年份:
    2019
  • 资助金额:
    $ 110万
  • 项目类别:
    Continuing Grant
CIF: Small: Collaborative Research: Generative Adversarial Privacy: A Data-driven Approach to Guaranteeing Privacy and Utility
CIF:小型:协作研究:生成对抗性隐私:保证隐私和实用性的数据驱动方法
  • 批准号:
    1815361
  • 财政年份:
    2018
  • 资助金额:
    $ 110万
  • 项目类别:
    Standard Grant
CPS: TTP Option: Synergy: A Verifiable Framework for Cyber- Physical Attacks and Countermeasures in a Resilient Electric Power Grid
CPS:TTP 选项:协同:弹性电网中网络物理攻击和对策的可验证框架
  • 批准号:
    1449080
  • 财政年份:
    2015
  • 资助金额:
    $ 110万
  • 项目类别:
    Cooperative Agreement
CAREER: Privacy-Guaranteed Distributed Interactions in Critical Infrastructure Networks
职业:关键基础设施网络中保证隐私的分布式交互
  • 批准号:
    1350914
  • 财政年份:
    2014
  • 资助金额:
    $ 110万
  • 项目类别:
    Continuing Grant

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

CAREER: Explanation-based Optimization of Diversified Information Retrieval to Enhance AI Systems
职业:基于解释的多样化信息检索优化以增强人工智能系统
  • 批准号:
    2339932
  • 财政年份:
    2024
  • 资助金额:
    $ 110万
  • 项目类别:
    Continuing Grant
Optimization of auditory temporal information processing mechanisms through the development of children with cochlear implants
通过人工耳蜗植入儿童的发育优化听觉时间信息处理机制
  • 批准号:
    23H01063
  • 财政年份:
    2023
  • 资助金额:
    $ 110万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Elucidation of learner's information reception mechanism and optimization of information conveyance method in the diversification of class style
课堂风格多元化中学习者信息接收机制的阐明与信息传递方式的优化
  • 批准号:
    23H03429
  • 财政年份:
    2023
  • 资助金额:
    $ 110万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A Study on Improvement of Learning Motivation by Personal Optimization of Achievement Goals of Digital Educational Materials Based on Biometric Information
基于生物特征信息的数字教材成绩目标个人优化提高学习动机的研究
  • 批准号:
    23K12841
  • 财政年份:
    2023
  • 资助金额:
    $ 110万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Realization of functional differentiation and information integration through optimization of information flow
通过优化信息流实现功能差异化和信息整合
  • 批准号:
    23K11256
  • 财政年份:
    2023
  • 资助金额:
    $ 110万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CDS&E: Enabling Quantum Technology Design Optimization Using Large-Scale Quantum Information Preserving Computational Electromagnetics Methods
CDS
  • 批准号:
    2202389
  • 财政年份:
    2022
  • 资助金额:
    $ 110万
  • 项目类别:
    Standard Grant
Optimization of air-sea interaction using sea surface information and its impact on meso- to synoptic-scale phenomena
利用海面信息优化海气相互作用及其对中观到天气尺度现象的影响
  • 批准号:
    22K14328
  • 财政年份:
    2022
  • 资助金额:
    $ 110万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Leveraging Curvature Information for Efficient Neural Network Optimization
利用曲率信息进行高效的神经网络优化
  • 批准号:
    559166-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 110万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Optimization of Road Weather Information Systems (RWIS) Sensor Location and Density using Big Data
使用大数据优化道路天气信息系统 (RWIS) 传感器位置和密度
  • 批准号:
    535225-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 110万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Leveraging Curvature Information for Efficient Neural Network Optimization
利用曲率信息进行高效的神经网络优化
  • 批准号:
    559166-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 110万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了