RAPID: SaTC: FACT: Federated Analytics based Contact Tracing for COVID-19
RAPID:SaTC:事实:基于联合分析的 COVID-19 接触者追踪
基本信息
- 批准号:2031799
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The spread of the Corona Virus Disease 2019 (COVID-19), a highly-infectious disease caused by a newly discovered coronavirus, has reached pandemic levels across the globe. As the numbers in the USA of infections, critical care interventions and deaths continue to rise, mobile applications (apps) that enable contact tracing (CT) are being rapidly deployed to monitor the spread of COVID-19. However, on-going deployments, based on anonymously sharing tokens without exploiting the rich local device data, are insufficient in monitoring disease spread in a timely manner and are also vulnerable to privacy and security attacks. There is an urgent need to develop CT apps that not only monitor but also intervene to limit COVID-19 spread while respecting user security and privacy. This project addresses this challenge via Federated Analytics based Contact Tracing (FACT), a refined federated learning approach to leverage both device-level data and server capabilities in a private and secure manner. FACT enables prevention and intervention by including hotspot identification, user alerts, and continual assessment of user COVID-19 risk. FACT guarantees a private and secure way to (i) evaluate a user's need for testing or their resilience to exposure, and (ii) assess herd immunity across the population. FACT addresses both the vulnerability of current Bluetooth-based systems to a variety of attacks and limited learning at the server by proposing a secure GPS+Bluetooth system which will enable the server to detect geographical infection clusters in a privacy-preserving manner. FACT also harnesses the rich device-level mobility and acoustic sensing data to periodically predict risks of those exposed to COVID-19 positive patients using federated learning and without sharing any device data with the server. Several simple, but well-validated, parameters are extracted from these sensors to develop local digital markers of COVID risk. At the heart of these innovations are the refinements FACT brings to standard federated learning via knowledge distillation and model compression. This project, with the support of ASU University Technology Office and collaboration with industry companies, will deploy and evaluate FACT via a mobile app and reach many users. FACT can extend the clinical utility of acoustic measures, adopted in general clinical trials, for use in COVID-19 patients. This research also provides immense opportunities to train and expose diverse graduate students to the technical challenges of ensuring privacy and security while simultaneously enabling socially beneficial technologies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
2019冠状病毒病(COVID-19)是一种由新发现的冠状病毒引起的高度传染性疾病,在全球范围内的传播已达到大流行水平。随着美国感染人数、重症监护干预措施和死亡人数持续上升,支持接触者追踪(CT)的移动应用程序正在迅速部署,以监测COVID-19的传播。然而,基于匿名共享令牌而不利用丰富的本地设备数据的正在进行的部署不足以及时监测疾病传播,并且容易受到隐私和安全攻击。在尊重用户安全和隐私的同时,迫切需要开发既能监测又能干预的CT应用程序,以限制新冠病毒的传播。该项目通过基于接触跟踪(FACT)的联邦分析解决了这一挑战,这是一种改进的联邦学习方法,以私有和安全的方式利用设备级数据和服务器功能。FACT通过热点识别、用户警报和持续评估用户COVID-19风险,实现预防和干预。FACT保证以一种私密和安全的方式(i)评估用户对检测的需求或其对暴露的适应能力,以及(ii)评估整个人群的群体免疫力。FACT通过提出一种安全的GPS+蓝牙系统,使服务器能够以保护隐私的方式检测地理感染集群,解决了当前基于蓝牙系统对各种攻击的脆弱性和服务器上有限的学习能力。FACT还利用丰富的设备级移动性和声学传感数据,通过联合学习定期预测接触COVID-19阳性患者的风险,而无需与服务器共享任何设备数据。从这些传感器中提取几个简单但经过充分验证的参数,以开发COVID风险的本地数字标记。这些创新的核心是FACT通过知识蒸馏和模型压缩为标准联邦学习带来的改进。在亚利桑那州立大学技术办公室的支持下,该项目将与行业公司合作,通过移动应用程序部署和评估FACT,并接触到许多用户。FACT可以扩展一般临床试验中采用的声学测量的临床应用,用于COVID-19患者。这项研究还提供了巨大的机会来培训和暴露不同的研究生,以确保隐私和安全的技术挑战,同时实现对社会有益的技术。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Enabling Deep Learning on Edge Devices through Filter Pruning and Knowledge Transfer
通过过滤器修剪和知识转移在边缘设备上启用深度学习
- DOI:10.48550/arxiv.2201.10947
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Kaiqi Zhao, Yitao Chen
- 通讯作者:Kaiqi Zhao, Yitao Chen
Catalic: Delegated PSI Cardinality with Applications to Contact Tracing
Catalic:委托 PSI 基数及其在联系人追踪中的应用
- DOI:10.1007/978-3-030-64840-4_29
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Duong, Thai;Phan, Hieu;Trieu, Ni.
- 通讯作者:Trieu, Ni.
Being Properly Improper
- DOI:
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:R. Nock;Tyler Sypherd;L. Sankar
- 通讯作者:R. Nock;Tyler Sypherd;L. Sankar
Oblivious Key-Value Stores and Amplification for Private Set Intersection
- DOI:10.1007/978-3-030-84245-1_14
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Gayathri Garimella;Benny Pinkas;Mike Rosulek;Ni Trieu;Avishay Yanai
- 通讯作者:Gayathri Garimella;Benny Pinkas;Mike Rosulek;Ni Trieu;Avishay Yanai
An Alphabet of Leakage Measures
泄漏测量字母表
- DOI:10.1109/itw54588.2022.9965918
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Gilani, Atefeh;Kurri, Gowtham R.;Kosut, Oliver;Sankar, Lalitha
- 通讯作者:Sankar, Lalitha
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lalitha Sankar其他文献
Label Noise Robustness for Domain-Agnostic Fair Corrections via Nearest Neighbors Label Spreading
通过最近邻标签传播实现与域无关的公平校正的标签噪声鲁棒性
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Nathan Stromberg;Rohan Ayyagari;Sanmi Koyejo;Richard Nock;Lalitha Sankar - 通讯作者:
Lalitha Sankar
Last Iterate Convergence of Popov Method for Non-monotone Stochastic Variational Inequalities
非单调随机变分不等式波波夫方法的最后迭代收敛
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Daniil Vankov;A. Nedich;Lalitha Sankar - 通讯作者:
Lalitha Sankar
Lalitha Sankar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lalitha Sankar', 18)}}的其他基金
Exploiting Physical and Dynamical Structures for Real-time Inference in Electric Power Systems
利用物理和动态结构进行电力系统实时推理
- 批准号:
2246658 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SCH: Fair Federated Representation Learning for Breast Cancer Risk Scoring
合作研究:SCH:乳腺癌风险评分的公平联合表示学习
- 批准号:
2205080 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Unifying Information- and Optimization-Theoretic Approaches for Modeling and Training Generative Adversarial Networks
统一信息理论和优化理论方法来建模和训练生成对抗网络
- 批准号:
2134256 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
CIF: Small: Alpha Loss: A New Framework for Understanding and Trading Off Computation, Accuracy, and Robustness in Machine Learning
CIF:小:Alpha 损失:理解和权衡机器学习中的计算、准确性和鲁棒性的新框架
- 批准号:
2007688 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Student Travel Support for the 2020 IEEE SGComm Conference. To be Held November, 11-13, 2020 at Arizona State University.
2020 年 IEEE SGComm 会议的学生旅行支持。
- 批准号:
2024805 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CIF: Medium: Collaborative Research: Information-theoretic Guarantees on Privacy in the Age of Learning
CIF:媒介:协作研究:学习时代隐私的信息理论保证
- 批准号:
1901243 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: High-Dimensional Spatio-Temporal Data Science for a Resilient Power Grid: Towards Real-Time Integration of Synchrophasor Data
合作研究:弹性电网的高维时空数据科学:同步相量数据的实时集成
- 批准号:
1934766 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
CIF: Small: Collaborative Research: Generative Adversarial Privacy: A Data-driven Approach to Guaranteeing Privacy and Utility
CIF:小型:协作研究:生成对抗性隐私:保证隐私和实用性的数据驱动方法
- 批准号:
1815361 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CPS: TTP Option: Synergy: A Verifiable Framework for Cyber- Physical Attacks and Countermeasures in a Resilient Electric Power Grid
CPS:TTP 选项:协同:弹性电网中网络物理攻击和对策的可验证框架
- 批准号:
1449080 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Cooperative Agreement
CAREER: Privacy-Guaranteed Distributed Interactions in Critical Infrastructure Networks
职业:关键基础设施网络中保证隐私的分布式交互
- 批准号:
1350914 - 财政年份:2014
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
相似海外基金
CRII: SaTC: Automated Knowledge Representation for IoT Cybersecurity Regulations
CRII:SaTC:物联网网络安全法规的自动化知识表示
- 批准号:
2348147 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CRII: SaTC: Privacy vs. Accountability--Usable Deniability and Non-Repudiation for Encrypted Messaging Systems
CRII:SaTC:隐私与责任——加密消息系统的可用否认性和不可否认性
- 批准号:
2348181 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330940 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
CRII: SaTC: Evolving I/O Protocols for Confidential Computing
CRII:SaTC:用于机密计算的不断发展的 I/O 协议
- 批准号:
2348130 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
SaTC: CORE: Small: An evaluation framework and methodology to streamline Hardware Performance Counters as the next-generation malware detection system
SaTC:核心:小型:简化硬件性能计数器作为下一代恶意软件检测系统的评估框架和方法
- 批准号:
2327427 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
CRII: SaTC: Enforcing Expressive Security Policies using Trusted Execution Environments
CRII:SaTC:使用可信执行环境执行表达性安全策略
- 批准号:
2348304 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
CRII: SaTC: The Right to be Forgotten in Follow-ups of Machine Learning: When Privacy Meets Explanation and Efficiency
CRII:SaTC:机器学习后续中被遗忘的权利:当隐私遇到解释和效率时
- 批准号:
2348177 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant