Shape Deviation Generator and Learner - An Engineering-Informed Convolution Modeling and Learning Framework for Additive Manufacturing Accuracy Control

形状偏差生成器和学习器 - 用于增材制造精度控制的工程知情卷积建模和学习框架

基本信息

  • 批准号:
    1901514
  • 负责人:
  • 金额:
    $ 35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

Although additive manufacturing (AM), known as 3D Printing, holds great promise as a direct manufacturing technology, significant deviations from the desired part shape often occur in the printed parts. As a result,shape distortion control is a critical issue for AM built products. With advances in computing and increased accessibility of AM product data, machine learning for AM has become a viable strategy for enhancing 3D printing performance. However, meaningful learning of engineering data requires effective integration of domain knowledge, making general-purpose machine learning methods difficult to apply. As a result, there is a critical need for an engineering-informed, data-analytical, machine learning framework for shape distortion control. Such a tool is essential to improving AM quality and reducing cost and waste. The project will establish an engineering-informed convolution modeling and learning methodological framework for AM distortion control. A Shape Deviation Generator and Learner for shape accuracy control will be researched by: (1) modeling 3D shape deviation generation by establishing a new convolution formulation for layer-by-layer fabrication processes, (2) transferring the 3D shape deviation model from a small set of training shapes to a wider variety of shapes by exploring and learning shape similarity under a cookie-cutter modeling framework, (3) transferring the shape deviation model between AM processes by exploring and learning process similarity through an effect equivalence framework, and (4) validating modeling and transfer learning methodologies in both polymer and metal AM processes. Methodologies and tools will be developed to mitigate both shape and process complexities towards the goal of building AM products with high geometric fidelity: from single shape to multiple shapes, and from single process to multiple AM processes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
虽然增材制造(AM),即3D打印,作为一种直接制造技术,具有很大的前景,但在打印零件中经常会出现与所需零件形状的显著偏差。 因此,形状变形控制是AM制造产品的关键问题。随着计算技术的进步和AM产品数据可访问性的提高,AM的机器学习已成为提高3D打印性能的可行策略。然而,对工程数据进行有意义的学习需要有效地整合领域知识,这使得通用机器学习方法难以应用。因此,迫切需要一个工程信息,数据分析,机器学习框架的形状变形控制。 这种工具对于提高AM质量、降低成本和浪费至关重要。该项目将建立一个工程知情的卷积建模和学习方法框架的AM失真控制。用于形状精度控制的形状偏差生成器和学习器将通过以下方式进行研究:(1)通过建立用于逐层制造工艺的新卷积公式来对3D形状偏差生成进行建模,(2)通过在饼干模型框架下探索和学习形状相似性来将3D形状偏差模型从一小组训练形状转移到更广泛的各种形状,(3)通过效应等效框架探索和学习过程相似性,在AM过程之间转移形状偏差模型,以及(4)验证聚合物和金属AM过程中的建模和转移学习方法。将开发方法和工具,以减轻形状和工艺的复杂性,实现构建具有高几何保真度的增材制造产品的目标:从单一形状到多种形状,从单一工艺到多个增材制造工艺。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Efficiently registering scan point clouds of 3D printed parts for shape accuracy assessment and modeling
  • DOI:
    10.1016/j.jmsy.2020.04.001
  • 发表时间:
    2020-07-01
  • 期刊:
  • 影响因子:
    12.1
  • 作者:
    Decker, Nathan;Wang, Yuanxiang;Huang, Qiang
  • 通讯作者:
    Huang, Qiang
Automatic Feature Selection for Shape Registration in Additive Manufacturing
增材制造中形状配准的自动特征选择
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lin, Weizhi;Dai, Peng;Huang, Qiang
  • 通讯作者:
    Huang, Qiang
Extended Fabrication-Aware Convolution Learning Framework for Predicting 3D Shape Deformation in Additive Manufacturing
用于预测增材制造中 3D 形状变形的扩展制造感知卷积学习框架
Optimizing the Expected Utility of Shape Distortion Compensation Strategies for Additive Manufacturing
优化增材制造形状畸变补偿策略的预期效用
  • DOI:
    10.1016/j.promfg.2021.06.038
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Decker, Nathan;Huang, Qiang
  • 通讯作者:
    Huang, Qiang
Learning and Predicting Shape Deviations of Smooth and Non-Smooth 3D Geometries Through Mathematical Decomposition of Additive Manufacturing
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Qiang Huang其他文献

More complications and higher transfusion rate in patients with rheumatoid arthritis than osteoarthritis undergoing total hip arthroplasty
类风湿关节炎患者比骨关节炎患者行全髋关节置换术并发症更多,输血率更高
  • DOI:
    10.1007/s00264-023-05728-7
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Wenyu Jiang;Hong Xu;Xingfa Wang;Zhuangzhuang Jia;Cheng;Qiang Huang;Zongke Zhou;F. Pei
  • 通讯作者:
    F. Pei
Cognitive and Neural Mechanisms Involved in Interactions between Touch and Emotion
参与触摸和情感相互作用的认知和神经机制
Experimental study on the gene therapy of malignant glioma with antisense VEGF RNA
反义VEGF RNA基因治疗恶性胶质瘤的实验研究
Transcriptomic and functional resources for the small hive beetle Aethina tumida, a worldwide parasite of honey bees
小蜂巢甲虫 Aethina tumida(一种世界范围内的蜜蜂寄生虫)的转录组和功能资源
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Tarver;Qiang Huang;L. D. de Guzman;T. Rinderer;Beth A. Holloway;J. Reese;Daniel B. Weaver;J. Evans
  • 通讯作者:
    J. Evans
Fabrication of multilayered tube-shaped microstructures embedding cells inside microfluidic devices
微流体装置内嵌入细胞的多层管状微结构的制造

Qiang Huang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Qiang Huang', 18)}}的其他基金

PFI-TT: Electrodeposited Flexible Superconducting Cables for Quantum Applications
PFI-TT:用于量子应用的电镀柔性超导电缆
  • 批准号:
    2016541
  • 财政年份:
    2021
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
CAREER: Novel Electrodeposition Method using Water-In-Salt Electrolytes for Superconductor Thin Film Fabrication
职业:使用盐包水电解质制造超导薄膜的新型电沉积方法
  • 批准号:
    1941820
  • 财政年份:
    2020
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
I-Corps: Electrodeposited Superconductor Coatings
I-Corps:电镀超导涂层
  • 批准号:
    1929549
  • 财政年份:
    2019
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Correlating The Chemistry and Process With The Impurity, Structure and Properties of Electrodeposited Cobalt for Advanced Interconnects
将先进互连件的化学和工艺与电沉积钴的杂质、结构和性能相关联
  • 批准号:
    1662332
  • 财政年份:
    2017
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Explore the Theoretical Framework of Engineering Knowledge Transfer in Cybermanufacturing Systems
EAGER/协作研究:探索网络制造系统中工程知识转移的理论框架
  • 批准号:
    1744121
  • 财政年份:
    2017
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
CPS/Synergy/Collaborative Research: Smart Calibration Through Deep Learning for High-Confidence and Interoperable Cyber-Physical Additive Manufacturing Systems
CPS/协同/协作研究:通过深度学习进行智能校准,实现高可信度和可互操作的网络物理增材制造系统
  • 批准号:
    1544917
  • 财政年份:
    2015
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: Geometric Shape Error Control for High-Precision Additive Manufacturing
合作研究:高精度增材制造的几何形状误差控制
  • 批准号:
    1333550
  • 财政年份:
    2013
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
CAREER: Nanomanufacturing Process Modeling and Control - A Foundation for Large-Scale Production
职业:纳米制造过程建模和控制 - 大规模生产的基础
  • 批准号:
    1055394
  • 财政年份:
    2011
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: Nanostructure Growth Process Modeling and Optimal Experimental Strategies for Repeatable Fabrication of Nanostructures for Application in Photovoltaics
合作研究:纳米结构生长过程建模和可重复制造光伏应用纳米结构的最佳实验策略
  • 批准号:
    1000972
  • 财政年份:
    2010
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
In Situ Nanomanufacturing Process Control Through Multiscale Nanostructure Growth Modeling
通过多尺度纳米结构生长建模进行原位纳米制造过程控制
  • 批准号:
    1002580
  • 财政年份:
    2009
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant

相似海外基金

Measurement of L2 pronunciation deviation and L2 listening disfluency and its application to prosody training for smooth international communication
二语发音偏差和二语听力不流利度测量及其在国际交流顺畅韵律训练中的应用
  • 批准号:
    23K17459
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Large deviation estimates for occupation times of intermittent maps
间歇地图占用时间的大偏差估计
  • 批准号:
    23K19010
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Quantifying a deviation between tsunami inundation and sedimentation by numerical experiments focusing on "slow tsunamis"
通过以“慢海啸”为中心的数值实验来量化海啸淹没和沉积之间的偏差
  • 批准号:
    23K13177
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Large Deviation Principles for Coulomb-Type Flows
库仑型流动的大偏差原理
  • 批准号:
    557776-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Predicting psychosis risk in youth using a novel structural neuroimaging score that measures deviation from normative development. Can we bring it to communities using portable, low-field MRI?
使用一种新颖的结构神经影像评分来预测青少年的精神病风险,该评分可测量偏离规范发展的情况。
  • 批准号:
    10435204
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
Large deviation principle and metastability for lattice gas
晶格气体大偏差原理及亚稳态
  • 批准号:
    22K13929
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Predicting psychosis risk in youth using a novel structural neuroimaging score that measures deviation from normative development. Can we bring it to communities using portable, low-field MRI?
使用一种新颖的结构神经影像评分来预测青少年的精神病风险,该评分可测量偏离规范发展的情况。
  • 批准号:
    10614565
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
DMS-EPSRC Sharp Large Deviation Estimates of Fluctuations in Stochastic Hydrodynamic Systems
随机流体动力系统波动的 DMS-EPSRC 急剧大偏差估计
  • 批准号:
    EP/V013319/1
  • 财政年份:
    2021
  • 资助金额:
    $ 35万
  • 项目类别:
    Research Grant
Large Deviation Principles for Coulomb-Type Flows
库仑型流动的大偏差原理
  • 批准号:
    557776-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 35万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
DMS-EPSRC Collaborative Research: Sharp Large Deviation Estimates of Fluctuations in Stochastic Hydrodynamic Systems
DMS-EPSRC 合作研究:随机水动力系统波动的急剧大偏差估计
  • 批准号:
    2012510
  • 财政年份:
    2020
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了