Workshop: Mathematical Fluids, Materials, and Biology

研讨会:数学流体、材料和生物学

基本信息

  • 批准号:
    1903035
  • 负责人:
  • 金额:
    $ 2.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-05-01 至 2020-04-30
  • 项目状态:
    已结题

项目摘要

This award provides support for researchers to participate in a workshop on "Mathematical Fluids, Materials, and Biology" at the University of Michigan, Ann Arbor, on June 2019. The three-day workshop will be arranged thematically, with speakers covering topics in fluid-structure interactions and biological propulsion, complex fluids and active matter, and intracellular mechanics and other biological applications. Such small workshops also provide a critical means for students and postdocs to network with faculty members; the workshop will include a poster session to improve student and postdoc visibility. Information about the event can be found at: https://mcaim.math.lsa.umich.edu/event/fluids-materials-and-biology/The form and function of flexible structures immersed in fluids are of great importance on a vast range of length scales, from the reduced drag on leaves which fold in the wind, to the squeezing transport of blood cells through capillaries. Theoretical and numerical analysis of fluid-structure interactions have been tremendously successful and have led to the development of now standard techniques used in all areas of applied mathematics. The field has seen a surge of activity in the last decade due to intersections with biology and soft matter. Meanwhile, the peculiar and intricate behaviors of complex fluids, those fluids which respond to deformation not only with viscous dissipation but also with shear-dependent viscosity, elasticity, anisotropy (direction-dependent response) and other effects is an exciting and active area of its own, particularly as applied to biological systems. This is a particularly vibrant area of multi-disciplinary science, requiring sophisticated mathematical understanding and novel computational techniques to push the field further towards problems of immediate interest for applications in biology, engineering, and human health services.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项为研究人员提供支持,以参加2019年6月在密歇根大学安阿伯举行的“数学流体,材料和生物学”研讨会。为期三天的研讨会将按主题安排,演讲者的主题包括流体-结构相互作用和生物推进,复杂流体和活性物质,细胞内力学和其他生物应用。这种小型研讨会也为学生和博士后提供了与教师建立联系的重要手段;研讨会将包括一个海报会议,以提高学生和博士后的知名度。有关该事件的信息可以在以下网站找到:https://mcaim.math.lsa.umich.edu/event/fluids-materials-and-biology/The浸入液体中的柔性结构的形式和功能在很大范围的长度尺度上都非常重要,从减少风中折叠的叶子的阻力,到通过毛细血管挤压血细胞的运输。流体-结构相互作用的理论和数值分析已经取得了巨大的成功,并导致了现在应用数学所有领域中使用的标准技术的发展。在过去的十年中,由于与生物学和软物质的交叉,该领域的活动激增。与此同时,复杂流体的特殊和复杂的行为,这些流体对变形的响应不仅具有粘性耗散,而且具有剪切相关的粘度,弹性,各向异性(方向相关响应)和其他效应,是其自身令人兴奋和活跃的领域,特别是应用于生物系统。这是多学科科学中一个特别活跃的领域,需要复杂的数学理解和新颖的计算技术,以推动该领域进一步向生物学、工程学和人类健康服务中应用的直接利益问题发展。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Saverio Spagnolie其他文献

Saverio Spagnolie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Saverio Spagnolie', 18)}}的其他基金

Collaborative Research: Sharing the Strain - Synthetic Liquid Crystals as Soft Biomaterials
合作研究:共享应变——合成液晶作为软生物材料
  • 批准号:
    2003819
  • 财政年份:
    2020
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Continuing Grant
Multi-Scale Models for Membrane Fission Catalyzed by the Endosomal Sorting Complexes Required for Transport
运输所需的内体分选复合物催化的膜裂变的多尺度模型
  • 批准号:
    1661900
  • 财政年份:
    2017
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: : Mathematical modeling and computation of morphological instabilities in reactive fluids driven out of equilibrium
合作研究::失去平衡的反应流体形态不稳定性的数学建模和计算
  • 批准号:
    2309799
  • 财政年份:
    2023
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Standard Grant
Collaborative Research: : Mathematical modeling and computation of morphological instabilities in reactive fluids driven out of equilibrium
合作研究::失去平衡的反应流体形态不稳定性的数学建模和计算
  • 批准号:
    2309798
  • 财政年份:
    2023
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Standard Grant
Collaborative Research: : Mathematical modeling and computation of morphological instabilities in reactive fluids driven out of equilibrium
合作研究::失去平衡的反应流体形态不稳定性的数学建模和计算
  • 批准号:
    2309800
  • 财政年份:
    2023
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Standard Grant
Mathematical Questions in Relativistic Fluids
相对论流体中的数学问题
  • 批准号:
    2107701
  • 财政年份:
    2021
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Standard Grant
Mathematical and Computational Modeling of Interaction between Fluids and Poroelastic Structures
流体与多孔弹性结构之间相互作用的数学和计算模型
  • 批准号:
    2111129
  • 财政年份:
    2021
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Standard Grant
Mathematical analysis of inverse problems and modelling for complex fluids and diffusion in heterogeneous media
逆问题的数学分析以及复杂流体和非均匀介质中扩散的建模
  • 批准号:
    20H00117
  • 财政年份:
    2020
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Mathematical Modelling of Nonlinear Ring Waves of Moderate Amplitude in Fluids
流体中中等幅度非线性环波的数学模型
  • 批准号:
    2458723
  • 财政年份:
    2020
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Studentship
Mathematical analysis of fluids with electrical effects
具有电效应的流体的数学分析
  • 批准号:
    19K23408
  • 财政年份:
    2019
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Mathematical Questions in Classical and Relativistic Fluids and Applications
经典和相对论流体中的数学问题及其应用
  • 批准号:
    1812826
  • 财政年份:
    2018
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Standard Grant
Entropy dissipative structure and mathematical analysis for complex fluids
复杂流体的熵耗散结构与数学分析
  • 批准号:
    18H01131
  • 财政年份:
    2018
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了