BIGDATA: F: Collaborative Research: From Visual Data to Visual Understanding
BIGDATA:F:协作研究:从视觉数据到视觉理解
基本信息
- 批准号:1903222
- 负责人:
- 金额:$ 19.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The field of visual recognition, which focuses on creating computer algorithms for automatically understanding photographs and videos, has made tremendous gains in the past few years. Algorithms can now recognize and localize thousands of objects with reasonable accuracy as well as identify other visual content, such as scenes and activities. For instance, there are now smart phone apps that can automatically sift through a user's photos and find all party pictures, or all pictures of cars, or all sunset photos. However, the type of "visual understanding" done by these methods is still rather superficial, exhibiting mostly rote memorization rather than true reasoning. For example, current algorithms have a hard time telling if an image is typical (e.g., car on a road) or unusual (e.g., car in the sky), or answering simple questions about a photograph, e.g., "what are the people looking at?", "what just happened?", "what might happen next?" A central problem is that current methods lack the data about the world outside of the photograph. To achieve true human-like visual understanding, computers will have to reason about the broader spatial, temporal, perceptual, and social context suggested by a given visual input. This project is using big visual data to gather large-scale deep semantic knowledge about how events, physical and social interactions, and how people perceive the world and each other. The research focuses on developing methods to capture and represent this knowledge in a way that makes it broadly applicable to a range of visual understanding tasks. This will enable novel computer algorithms that have a deeper, more human-like, understanding of the visual world and can effectively function in complex, real-world situations and environments. For example, if a robot can predict what a person might do next in a given situation, then the robot can better aid the person in their task. Broader impacts will include new publicly-available software tools and data that can be used for various visual reasoning tasks. Additionally, the project will have a multi-pronged educational component, including incorporating aspects of the research in the graduate teaching curriculum, undergraduate and K-12 outreach, as well as special mentoring and focused events for advancement of women in computer science.The main technical focus of this project is to advance computational recognition efforts toward producing a general human-like visual understanding of images and video that can function on previously unseen data, unseen tasks and settings. The aim of this project is to develop a new large-scale knowledge base called the visual Memex that extracts and stores vast set of visual relationships between data items in a multi-graph representation, with nodes corresponding to data items and edges indicating different types of relationships. This large knowledge base will be used in a lambda-calculus-powered reasoning engine to make inferences about visual data on a global scale. Additionally, the project will test computational recognition algorithms on several visual understanding tasks designed to evaluate progress on a variety of aspects of visual understanding, including: linguistic (evaluating our understanding about imagery through language tasks such as visual question-answering), to purely visual (evaluating our understanding of spatial context through visual fill-in-the-blanks), to temporal (evaluating our temporal understanding by predicting future states), to physical (evaluating our understanding of human-object and human-scene interactions by predicting affordances). Datasets, knowledge base, and evaluation tools will be hosted on the project web site (http://www.tamaraberg.com/grants/bigdata.html).
视觉识别领域专注于创建自动理解照片和视频的计算机算法,在过去几年中取得了巨大的进步。算法现在可以以合理的精度识别和定位数千个对象,并识别其他视觉内容,如场景和活动。例如,现在有智能手机应用程序可以自动筛选用户的照片,并找到所有的聚会照片,或所有的汽车照片,或所有日落照片。然而,这些方法所达到的“视觉理解”仍然是相当肤浅的,大多表现为死记硬背,而不是真正的推理。例如,当前的算法很难判断图像是否是典型的(例如,道路上的汽车)或不寻常的(例如,天空中的汽车),或者回答关于照片的简单问题,例如,“人们在看什么?”,“刚才发生了什么事?”,“接下来可能会发生什么?“一个核心问题是,目前的方法缺乏关于照片之外世界的数据。为了实现真正的人类视觉理解,计算机必须对给定视觉输入所暗示的更广泛的空间,时间,感知和社会背景进行推理。该项目使用大视觉数据来收集关于事件、物理和社会互动以及人们如何感知世界和彼此的大规模深层语义知识。该研究的重点是开发方法来捕捉和表示这种知识的方式,使其广泛适用于一系列的视觉理解任务。这将使新的计算机算法能够对视觉世界有更深入、更人性化的理解,并能在复杂的现实情况和环境中有效地发挥作用。例如,如果一个机器人可以预测一个人在给定的情况下下一步会做什么,那么机器人就可以更好地帮助这个人完成任务。更广泛的影响将包括可用于各种视觉推理任务的新的公开软件工具和数据。此外,该项目将有一个多管齐下的教育组成部分,包括将研究的各个方面纳入研究生教学课程,本科和K-12推广,以及特别辅导和重点活动,以提高妇女在计算机科学。该项目的主要技术重点是推进计算识别的努力,以产生一个一般的人类-比如对图像和视频的视觉理解,可以在以前看不见的数据、看不见的任务和设置上发挥作用。该项目的目的是开发一个新的大规模知识库,称为可视化Memex,它可以提取和存储多图表示中数据项之间的大量可视化关系,节点对应于数据项,边缘表示不同类型的关系。这个庞大的知识库将被用于一个基于微积分的推理引擎中,以在全球范围内对视觉数据进行推理。此外,该项目将在几个视觉理解任务上测试计算识别算法,旨在评估视觉理解各个方面的进展,包括:语言(通过视觉问答等语言任务评估我们对图像的理解),以纯粹的视觉(通过视觉填空来评估我们对空间背景的理解),(通过预测未来状态来评估我们对时间的理解),到物理(通过预测启示来评估我们对人-物体和人-场景交互的理解)。数据集、知识库和评价工具将放在项目网站(http://www.tamaraberg.com/grants/bigdata.html)上。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Learning to Prove Theorems by Learning to Generate Theorems
通过学习生成定理来学习证明定理
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Wang, Mingzhe;Deng, Jia
- 通讯作者:Deng, Jia
SpatialSense: An Adversarially Crowdsourced Benchmark for Spatial Relation Recognition
SpatialSense:空间关系识别的对抗性众包基准
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Kaiyu Yang;Olga Russakovsky;Jia Deng
- 通讯作者:Jia Deng
Learning to Prove Theorems via Interacting with Proof Assistants
通过与证明助手交互学习证明定理
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Yang, Kaiyu;Deng, Jia
- 通讯作者:Deng, Jia
Strongly Incremental Constituency Parsing with Graph Neural Networks
- DOI:
- 发表时间:2020-10
- 期刊:
- 影响因子:0
- 作者:Kaiyu Yang;Jia Deng
- 通讯作者:Kaiyu Yang;Jia Deng
PackIt: A Virtual Environment for Geometric Planning
- DOI:
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:Ankit Goyal;Jia Deng
- 通讯作者:Ankit Goyal;Jia Deng
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jia Deng其他文献
Detection and Analysis of Commonly Used Infection Indicators in Patients with Acute Urticaria
急性荨麻疹患者常用感染指标的检测与分析
- DOI:
10.1159/000536642 - 发表时间:
2024 - 期刊:
- 影响因子:2.8
- 作者:
Jia Deng;Jifeng Liu;W. Xiang - 通讯作者:
W. Xiang
Fast dechlorination of trichloroethylene by a bimetallic Fe(OH)2/Ni composite
双金属 Fe(OH)2/Ni 复合材料快速脱氯三氯乙烯
- DOI:
10.1016/j.seppur.2021.119597 - 发表时间:
2022 - 期刊:
- 影响因子:8.6
- 作者:
Jia Deng;Xiang Zhan;Feng Wu;Shuxian Gao;Li-Zhi Huang - 通讯作者:
Li-Zhi Huang
Solar vaporizing desalination by heat concentration
- DOI:
https://doi.org/10.1016/j.renene.2020.02.105 - 发表时间:
2020 - 期刊:
- 影响因子:8.7
- 作者:
Jingyang Han;Xu Ji;Haiyang Xu;Yuanyuan Heng;Cong Wang;Jia Deng - 通讯作者:
Jia Deng
Induced generation of hydroxyl radicals from green rust under oxic conditions by iron-phosphate complexes
- DOI:
https://doi.org/10.1016/j.cej.2021.128780 - 发表时间:
2021 - 期刊:
- 影响因子:15.1
- 作者:
Liping Fang;Ling Xu;Jia Deng;Shuxian Gao;Li-Zhi Huang - 通讯作者:
Li-Zhi Huang
Development of In Vivo Predictive pH-Gradient Biphasic Dissolution Test for Weakly Basic Drugs: Optimization by Orthogonal Design
弱碱性药物体内预测 pH 梯度双相溶出测试的开发:正交设计优化
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0.6
- 作者:
Xiao;Shengying Shi;Junlin He;Jia Deng;Jingou Ji - 通讯作者:
Jingou Ji
Jia Deng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jia Deng', 18)}}的其他基金
SLES: Vision-Based Maximally-Symbolic Safety Supervisor with Graceful Degradation and Procedural Validation
SLES:基于视觉的最大符号安全监控器,具有优雅的降级和程序验证功能
- 批准号:
2331763 - 财政年份:2023
- 资助金额:
$ 19.91万 - 项目类别:
Standard Grant
CAREER: Toward Video2Sim: Turning Real World Videos into Simulations
职业:走向Video2Sim:将现实世界的视频变成模拟
- 批准号:
1942981 - 财政年份:2020
- 资助金额:
$ 19.91万 - 项目类别:
Continuing Grant
Multiple-Energy-Assisted Ultrasharp Probe-Based Nanomanufacturing for High-Resolution and High-Efficiency Nanopatterning
基于多能量辅助 Ultrasharp 探针的纳米制造,用于高分辨率和高效纳米图案化
- 批准号:
2006127 - 财政年份:2020
- 资助金额:
$ 19.91万 - 项目类别:
Standard Grant
RI: Small: Inverse Rendering by Co-Evolutionary Learning
RI:小:通过共同进化学习进行逆向渲染
- 批准号:
1854435 - 财政年份:2018
- 资助金额:
$ 19.91万 - 项目类别:
Continuing Grant
BIGDATA: F: Collaborative Research: From Visual Data to Visual Understanding
BIGDATA:F:协作研究:从视觉数据到视觉理解
- 批准号:
1633157 - 财政年份:2016
- 资助金额:
$ 19.91万 - 项目类别:
Standard Grant
RI: Small: Inverse Rendering by Co-Evolutionary Learning
RI:小:通过共同进化学习进行逆向渲染
- 批准号:
1617767 - 财政年份:2016
- 资助金额:
$ 19.91万 - 项目类别:
Continuing Grant
相似海外基金
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
- 批准号:
2348159 - 财政年份:2023
- 资助金额:
$ 19.91万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
- 批准号:
2308649 - 财政年份:2022
- 资助金额:
$ 19.91万 - 项目类别:
Standard Grant
BIGDATA: Collaborative Research: F: Holistic Optimization of Data-Driven Applications
BIGDATA:协作研究:F:数据驱动应用程序的整体优化
- 批准号:
2027516 - 财政年份:2020
- 资助金额:
$ 19.91万 - 项目类别:
Standard Grant
BIGDATA: F: Collaborative Research: Practical Analysis of Large-Scale Data with Lyme Disease Case Study
BIGDATA:F:协作研究:莱姆病案例研究大规模数据的实际分析
- 批准号:
1934319 - 财政年份:2019
- 资助金额:
$ 19.91万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Protecting Yourself from Wildfire Smoke: Big Data-Driven Adaptive Air Quality Prediction Methodologies
大数据:IA:协作研究:保护自己免受野火烟雾的侵害:大数据驱动的自适应空气质量预测方法
- 批准号:
1838022 - 财政年份:2019
- 资助金额:
$ 19.91万 - 项目类别:
Standard Grant
BIGDATA: F: Collaborative Research: Foundations of Responsible Data Management
大数据:F:协作研究:负责任的数据管理的基础
- 批准号:
1926250 - 财政年份:2019
- 资助金额:
$ 19.91万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
- 批准号:
1947584 - 财政年份:2019
- 资助金额:
$ 19.91万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
- 批准号:
1837964 - 财政年份:2019
- 资助金额:
$ 19.91万 - 项目类别:
Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
- 批准号:
1838222 - 财政年份:2019
- 资助金额:
$ 19.91万 - 项目类别:
Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
- 批准号:
1838248 - 财政年份:2019
- 资助金额:
$ 19.91万 - 项目类别:
Standard Grant