Multiple-Energy-Assisted Ultrasharp Probe-Based Nanomanufacturing for High-Resolution and High-Efficiency Nanopatterning

基于多能量辅助 Ultrasharp 探针的纳米制造,用于高分辨率和高效纳米图案化

基本信息

  • 批准号:
    2006127
  • 负责人:
  • 金额:
    $ 60.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Nanomanufacturing is the manufacture of sub-100 nanometer patterns, components, devices, and systems. Over the past few decades, nanomanufacturing progress has greatly advanced many fundamental research fields from physics to biology and has generated numerous commercial applications, such as biomedical products, semiconductor components, and energy devices. However, high-resolution manufacturing of sub-10 nanometer feature sizes remains a scientific challenge. This award supports fundamental research to create and understand ultrasharp probe-based nanomanufacturing processes for high-resolution and high-efficiency nanopatterning. By using strong and thin carbon nanotubes as patterning tools, this new ultrasharp probe-based nanomanufacturing paradigm will enable high-efficiency manufacturing down to sub-10 nm level and will accelerate innovations in high-resolution flexible and scalable manufacturing. This research will enable a number of science and engineering research and applications, will impact a number of industries, and will help boost the US economy. This research will provide scientific training and research experience to graduate and undergraduate students, particularly women and minorities, from various outreach programs at Binghamton University. Research results will be incorporated into existing advanced manufacturing and nanotechnology courses and will be disseminated through journal and conference publications and through outreach programs to local K-12 students.The goal of this project is to create and understand an ultrasharp probe-based nanomanufacturing technique for high-resolution and high-efficiency nanopatterning down to sub-10 nanometer feature level. This research will integrate electrical field, Joule heating, and mechanical vibration with an atomic force microscope to create an efficient nanomanufacturing platform to overcome the barriers of existing maskless nanomanufacturing techniques. The research team will manufacture machining tools from ultrasharp carbon nanotube atomic force microscope probes, with customized nanotube lengths and orientations, by using an electron microscopy nanomechanical single-nanotube pull-out technique. The team will experimentally characterize the patterning resolution, the manufacturing efficiency, and the tool lifetime. To understand the mechanism of the manufacturing technique, the research team will simulate electric flux density to uncover how the manufacturing parameters, such as the applied voltage and the thickness of resists, govern the resolution of the manufacturing process. Statistical and semi-empirical models will be built to unveil the relationships between the input parameters and the nanomanufacturing performance. This research will also combine the high-resolution manufacturing process with soft lithography to enable flexible and scalable high-resolution nanomanufacturing. It is envisioned that this research will enable a number of new technologies for biomedical, electronic, and energy applications in the research, industrial and governmental sectors.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
纳米制造是指制造100纳米以下的图案、组件、设备和系统。在过去的几十年里,纳米制造的进步极大地推进了从物理学到生物学的许多基础研究领域,并产生了许多商业应用,如生物医学产品,半导体元件和能源设备。然而,亚10纳米特征尺寸的高分辨率制造仍然是一个科学挑战。该奖项支持基础研究,以创建和理解基于超尖锐探针的纳米制造工艺,以实现高分辨率和高效率的纳米图案化。通过使用强而薄的碳纳米管作为图案化工具,这种新的基于超尖锐探针的纳米制造范式将实现低至10 nm以下的高效制造,并将加速高分辨率灵活和可扩展制造的创新。这项研究将推动许多科学和工程研究和应用,将影响许多行业,并将有助于推动美国经济。这项研究将提供科学培训和研究经验,研究生和本科生,特别是妇女和少数民族,从各种推广计划在宾厄姆顿大学。研究成果将被纳入现有的先进制造和纳米技术课程,并将通过期刊和会议出版物,并通过推广计划,以当地K-12 students.The项目的目标是创建和理解一个ultrasharp探针为基础的纳米制造技术的高分辨率和高效率的nanopatterning下降到亚10纳米功能水平传播。这项研究将电场,焦耳加热和机械振动与原子力显微镜相结合,以创建一个有效的纳米制造平台,以克服现有无掩模纳米制造技术的障碍。该研究小组将使用电子显微镜纳米机械单纳米管拉出技术,用超尖锐的碳纳米管原子力显微镜探针制造加工工具,定制纳米管长度和方向。该团队将通过实验来表征图案分辨率、制造效率和工具寿命。为了了解制造技术的机制,研究小组将模拟电通量密度,以揭示制造参数(如施加的电压和抗蚀剂的厚度)如何控制制造过程的分辨率。将建立统计和半经验模型来揭示输入参数和纳米制造性能之间的关系。这项研究还将联合收割机的高分辨率制造工艺与软光刻,使灵活和可扩展的高分辨率纳米制造。据设想,这项研究将使一系列新技术的生物医学,电子和能源应用在研究,工业和政府部门。这个奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A sensor-based monitoring approach to predict surface profile of vibration-assisted atomic force microscopy (AFM)-based nanofabrication
  • DOI:
    10.1016/j.mfglet.2023.08.109
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Xinchen Wang;Huimin Zhou;Jia Deng;Zimo Wang
  • 通讯作者:
    Xinchen Wang;Huimin Zhou;Jia Deng;Zimo Wang
Electric-Field and Mechanical Vibration-Assisted Atomic Force Microscope-Based Nanopatterning
基于电场和机械振动辅助原子力显微镜的纳米图案化
Electric-Field-Assisted Contact Mode AFM-Based Nanolithography with Low Stiffness Conductive Probes
具有低刚度导电探针的基于电场辅助接触模式 AFM 的纳米光刻
  • DOI:
    10.1115/1.4054316
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Zhou, Huimin;Jiang, Yingchun;Dmuchowski, Christopher M;Ke, Changhong;Deng, Jia
  • 通讯作者:
    Deng, Jia
Sliding energy landscape governs interfacial failure of nanotube-reinforced ceramic nanocomposites
  • DOI:
    10.1016/j.scriptamat.2021.114413
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Ning Li;Christopher M. Dmuchowski;Ying Jiang;Chenglin Yi;Feilin Gou;J. Deng;C. Ke;H. Chew
  • 通讯作者:
    Ning Li;Christopher M. Dmuchowski;Ying Jiang;Chenglin Yi;Feilin Gou;J. Deng;C. Ke;H. Chew
Oxidation weakens interfaces in carbon nanotube reinforced titanium nanocomposites: An in situ electron microscopy nanomechanical study
  • DOI:
    10.1016/j.eml.2020.101045
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Christopher M. Dmuchowski;Chenglin Yi;Feilin Gou;Anju Sharma;Cheol Park;C. Ke
  • 通讯作者:
    Christopher M. Dmuchowski;Chenglin Yi;Feilin Gou;Anju Sharma;Cheol Park;C. Ke
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jia Deng其他文献

Detection and Analysis of Commonly Used Infection Indicators in Patients with Acute Urticaria
急性荨麻疹患者常用感染指标的检测与分析
Fast dechlorination of trichloroethylene by a bimetallic Fe(OH)2/Ni composite
双金属 Fe(OH)2/Ni 复合材料快速脱氯三氯乙烯
  • DOI:
    10.1016/j.seppur.2021.119597
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Jia Deng;Xiang Zhan;Feng Wu;Shuxian Gao;Li-Zhi Huang
  • 通讯作者:
    Li-Zhi Huang
Solar vaporizing desalination by heat concentration
  • DOI:
    https://doi.org/10.1016/j.renene.2020.02.105
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    8.7
  • 作者:
    Jingyang Han;Xu Ji;Haiyang Xu;Yuanyuan Heng;Cong Wang;Jia Deng
  • 通讯作者:
    Jia Deng
Induced generation of hydroxyl radicals from green rust under oxic conditions by iron-phosphate complexes
  • DOI:
    https://doi.org/10.1016/j.cej.2021.128780
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    15.1
  • 作者:
    Liping Fang;Ling Xu;Jia Deng;Shuxian Gao;Li-Zhi Huang
  • 通讯作者:
    Li-Zhi Huang
Development of In Vivo Predictive pH-Gradient Biphasic Dissolution Test for Weakly Basic Drugs: Optimization by Orthogonal Design
弱碱性药物体内预测 pH 梯度双相溶出测试的开发:正交设计优化
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Xiao;Shengying Shi;Junlin He;Jia Deng;Jingou Ji
  • 通讯作者:
    Jingou Ji

Jia Deng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jia Deng', 18)}}的其他基金

SLES: Vision-Based Maximally-Symbolic Safety Supervisor with Graceful Degradation and Procedural Validation
SLES:基于视觉的最大符号安全监控器,具有优雅的降级和程序验证功能
  • 批准号:
    2331763
  • 财政年份:
    2023
  • 资助金额:
    $ 60.94万
  • 项目类别:
    Standard Grant
CAREER: Toward Video2Sim: Turning Real World Videos into Simulations
职业:走向Video2Sim:将现实世界的视频变成模拟
  • 批准号:
    1942981
  • 财政年份:
    2020
  • 资助金额:
    $ 60.94万
  • 项目类别:
    Continuing Grant
RI: Small: Inverse Rendering by Co-Evolutionary Learning
RI:小:通过共同进化学习进行逆向渲染
  • 批准号:
    1854435
  • 财政年份:
    2018
  • 资助金额:
    $ 60.94万
  • 项目类别:
    Continuing Grant
BIGDATA: F: Collaborative Research: From Visual Data to Visual Understanding
BIGDATA:F:协作研究:从视觉数据到视觉理解
  • 批准号:
    1903222
  • 财政年份:
    2018
  • 资助金额:
    $ 60.94万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: From Visual Data to Visual Understanding
BIGDATA:F:协作研究:从视觉数据到视觉理解
  • 批准号:
    1633157
  • 财政年份:
    2016
  • 资助金额:
    $ 60.94万
  • 项目类别:
    Standard Grant
RI: Small: Inverse Rendering by Co-Evolutionary Learning
RI:小:通过共同进化学习进行逆向渲染
  • 批准号:
    1617767
  • 财政年份:
    2016
  • 资助金额:
    $ 60.94万
  • 项目类别:
    Continuing Grant

相似国自然基金

度量测度空间上基于狄氏型和p-energy型的热核理论研究
  • 批准号:
    QN25A010015
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Digitally Assisted Power Amplifier Design with Enhanced Energy Efficiency
具有增强能效的数字辅助功率放大器设计
  • 批准号:
    LP220200906
  • 财政年份:
    2024
  • 资助金额:
    $ 60.94万
  • 项目类别:
    Linkage Projects
ECCS-EPSRC. Acoustically Induced Ferromagnetic Resonance (FMR) Assisted Energy Efficient Spin Torque Memory Devices
ECCS-EPSRC。
  • 批准号:
    EP/X036715/1
  • 财政年份:
    2023
  • 资助金额:
    $ 60.94万
  • 项目类别:
    Research Grant
Collaborative Research: Learning-Assisted Estimation and Management of Flexible Energy Resources in Active Distribution Networks
合作研究:主动配电网络中灵活能源的学习辅助估计和管理
  • 批准号:
    2313768
  • 财政年份:
    2023
  • 资助金额:
    $ 60.94万
  • 项目类别:
    Standard Grant
SNS-JU BEGREEN - Beyond 5G Artificial Intelligence Assisted Energy Efficient Open Radio Access Network
SNS-JU BEGREEN - 超越5G人工智能辅助节能开放无线电接入网络
  • 批准号:
    10072859
  • 财政年份:
    2023
  • 资助金额:
    $ 60.94万
  • 项目类别:
    EU-Funded
BeGREEN: Beyond 5G Artificial Intelligence Assisted Energy Efficient Open Radio Access Network
BeGREEN:超越 5G 人工智能辅助节能开放无线电接入网络
  • 批准号:
    10059696
  • 财政年份:
    2023
  • 资助金额:
    $ 60.94万
  • 项目类别:
    EU-Funded
Collaborative Research: Learning-Assisted Estimation and Management of Flexible Energy Resources in Active Distribution Networks
合作研究:主动配电网络中灵活能源的学习辅助估计和管理
  • 批准号:
    2313767
  • 财政年份:
    2023
  • 资助金额:
    $ 60.94万
  • 项目类别:
    Standard Grant
Clinical Utility of Dual-Energy X-ray-Assisted Mammography with a Focus on Microcalcification Components in Breast Cancer
双能 X 射线辅助乳房 X 线摄影的临床应用,重点关注乳腺癌微钙化成分
  • 批准号:
    23K15440
  • 财政年份:
    2023
  • 资助金额:
    $ 60.94万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CCSS: AI-Assisted Reconfigurable Dual-Input Load-Modulation Transmitter Array for Energy- and Spectrum-Efficient Massive MIMO Communications
CCSS:人工智能辅助可重构双输入负载调制发射机阵列,用于节能和频谱高效的大规模 MIMO 通信
  • 批准号:
    2218808
  • 财政年份:
    2022
  • 资助金额:
    $ 60.94万
  • 项目类别:
    Standard Grant
ECCS-EPSRC: Collaborative Research: Acoustically induced Ferromagnetic Resonance (FMR) assisted Energy Efficient Spin Torque memory devices
ECCS-EPSRC:合作研究:声感应铁磁谐振 (FMR) 辅助节能自旋转矩存储器件
  • 批准号:
    2152528
  • 财政年份:
    2022
  • 资助金额:
    $ 60.94万
  • 项目类别:
    Standard Grant
Nanoparticle Arrays for Novel, Organized Perovskites Assisted by Copolymer assembly Kinetics (NANOPACK): Designer nanomaterials for energy applications
共聚物组装动力学辅助的新型有序钙钛矿纳米粒子阵列 (NANOPACK):用于能源应用的设计纳米材料
  • 批准号:
    RGPIN-2019-05994
  • 财政年份:
    2022
  • 资助金额:
    $ 60.94万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了