CAREER: Toward Video2Sim: Turning Real World Videos into Simulations

职业:走向Video2Sim:将现实世界的视频变成模拟

基本信息

  • 批准号:
    1942981
  • 负责人:
  • 金额:
    $ 55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-04-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

This project develops new technology toward Video2Sim: automatically converting a video into a virtual world, where scenes are reconstructed, actions are re-enacted, and alternative outcomes are simulated by a computer. Such a system does not yet exist due to the limitations of existing technology, and as a result, virtual worlds need to be manually and laboriously constructed. Video2Sim is useful because virtual worlds can be used to train and evaluate AI systems. For example, videos of traffic accidents can be converted into simulations to test autonomous cars, or videos of kitchen scenes to test home robots. Simulation is more scalable and cost-effective than real world experiments and is particularly suited for machine learning algorithms that require a lot of training data. Furthermore, such an automated system can leverage a large number of videos to provide a comprehensive coverage of rare events, which is essential for evaluating and assuring the safety of autonomous systems. Therefore, Video2Sim has the potential to benefit a broad range of applications including robotics, healthcare, and transportation. Research in this project is integrated with K12, undergraduate, and graduate education through research training, course development and outreach events. This research develops key techniques toward a Video2Sim system with a focus on 3D shape and motion. This effort is organized into two thrusts: (1) reconstructing 3D shape and motion and (2) simulating dynamics and behavior. The goal of thrust 1 is to recover 3D shape and motion of a full scene from a monocular video, such that we can re-render the scene and re-enact the events from an arbitrary view. The focus is on developing methods to recover detailed 3D shape and 3D motion from arbitrary unconstrained videos. The goal of thrust 2 is to recover the underlying dynamics of a scene, such that we can not only re-enact the actual events but also simulate alternative outcomes. The focus is on developing methods to infer not only physical properties of passive objectives but also behavior models of agents, that is, entities that do not just move passively according to external forces but can plan and initiate their own actions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目开发了面向Video2Sim的新技术:自动将视频转换为虚拟世界,在虚拟世界中重建场景,重新制定行动,并通过计算机模拟替代结果。由于现有技术的限制,这样的系统还不存在,因此,虚拟世界需要手动和费力地构建。Video2Sim很有用,因为虚拟世界可以用来训练和评估AI系统。例如,交通事故的视频可以转换成模拟来测试自动驾驶汽车,或者厨房场景的视频来测试家用机器人。仿真比真实的世界实验更具可扩展性和成本效益,特别适合需要大量训练数据的机器学习算法。此外,这种自动化系统可以利用大量视频来提供对罕见事件的全面覆盖,这对于评估和确保自主系统的安全性至关重要。因此,Video2Sim有可能使广泛的应用受益,包括机器人,医疗保健和运输。该项目的研究通过研究培训,课程开发和推广活动与K12,本科和研究生教育相结合。本研究开发了一个Video2Sim系统的关键技术,重点是3D形状和运动。这项工作分为两个重点:(1)重建3D形状和运动以及(2)模拟动力学和行为。推力1的目标是从单目视频中恢复完整场景的3D形状和运动,这样我们就可以从任意视图重新渲染场景并重新制定事件。重点是开发从任意无约束视频中恢复详细3D形状和3D运动的方法。推力2的目标是恢复场景的潜在动力学,这样我们不仅可以重现实际事件,还可以模拟替代结果。该奖项的重点是开发方法,不仅推断被动目标的物理特性,还推断代理人的行为模型,即不只是被动地根据外力移动,而是可以计划和启动自己的行动的实体。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multiview Stereo with Cascaded Epipolar RAFT
  • DOI:
    10.48550/arxiv.2205.04502
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zeyu Ma;Zachary Teed;Jia Deng
  • 通讯作者:
    Zeyu Ma;Zachary Teed;Jia Deng
Infinite Photorealistic Worlds Using Procedural Generation
  • DOI:
    10.1109/cvpr52729.2023.01215
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexander R. E. Raistrick;Lahav Lipson;Zeyu Ma;Lingjie Mei;Mingzhe Wang;Yiming Zuo;Karhan Kayan;Hongyu Wen;Beining Han;Yihan Wang;Alejandro Newell;Hei Law;Ankit Goyal;Kaiyu Yang;Jia Deng
  • 通讯作者:
    Alexander R. E. Raistrick;Lahav Lipson;Zeyu Ma;Lingjie Mei;Mingzhe Wang;Yiming Zuo;Karhan Kayan;Hongyu Wen;Beining Han;Yihan Wang;Alejandro Newell;Hei Law;Ankit Goyal;Kaiyu Yang;Jia Deng
Tangent Space Backpropagation for 3D Transformation Groups
Convolutional Networks with Oriented 1D Kernels
View Synthesis with Sculpted Neural Points. ICLR 2023.
查看具有雕刻神经点的合成。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zuo, Yiming;Deng, Jia
  • 通讯作者:
    Deng, Jia
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jia Deng其他文献

Detection and Analysis of Commonly Used Infection Indicators in Patients with Acute Urticaria
急性荨麻疹患者常用感染指标的检测与分析
Fast dechlorination of trichloroethylene by a bimetallic Fe(OH)2/Ni composite
双金属 Fe(OH)2/Ni 复合材料快速脱氯三氯乙烯
  • DOI:
    10.1016/j.seppur.2021.119597
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Jia Deng;Xiang Zhan;Feng Wu;Shuxian Gao;Li-Zhi Huang
  • 通讯作者:
    Li-Zhi Huang
Solar vaporizing desalination by heat concentration
  • DOI:
    https://doi.org/10.1016/j.renene.2020.02.105
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    8.7
  • 作者:
    Jingyang Han;Xu Ji;Haiyang Xu;Yuanyuan Heng;Cong Wang;Jia Deng
  • 通讯作者:
    Jia Deng
Induced generation of hydroxyl radicals from green rust under oxic conditions by iron-phosphate complexes
  • DOI:
    https://doi.org/10.1016/j.cej.2021.128780
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    15.1
  • 作者:
    Liping Fang;Ling Xu;Jia Deng;Shuxian Gao;Li-Zhi Huang
  • 通讯作者:
    Li-Zhi Huang
Development of In Vivo Predictive pH-Gradient Biphasic Dissolution Test for Weakly Basic Drugs: Optimization by Orthogonal Design
弱碱性药物体内预测 pH 梯度双相溶出测试的开发:正交设计优化
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Xiao;Shengying Shi;Junlin He;Jia Deng;Jingou Ji
  • 通讯作者:
    Jingou Ji

Jia Deng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jia Deng', 18)}}的其他基金

SLES: Vision-Based Maximally-Symbolic Safety Supervisor with Graceful Degradation and Procedural Validation
SLES:基于视觉的最大符号安全监控器,具有优雅的降级和程序验证功能
  • 批准号:
    2331763
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Multiple-Energy-Assisted Ultrasharp Probe-Based Nanomanufacturing for High-Resolution and High-Efficiency Nanopatterning
基于多能量辅助 Ultrasharp 探针的纳米制造,用于高分辨率和高效纳米图案化
  • 批准号:
    2006127
  • 财政年份:
    2020
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
RI: Small: Inverse Rendering by Co-Evolutionary Learning
RI:小:通过共同进化学习进行逆向渲染
  • 批准号:
    1854435
  • 财政年份:
    2018
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
BIGDATA: F: Collaborative Research: From Visual Data to Visual Understanding
BIGDATA:F:协作研究:从视觉数据到视觉理解
  • 批准号:
    1903222
  • 财政年份:
    2018
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: From Visual Data to Visual Understanding
BIGDATA:F:协作研究:从视觉数据到视觉理解
  • 批准号:
    1633157
  • 财政年份:
    2016
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
RI: Small: Inverse Rendering by Co-Evolutionary Learning
RI:小:通过共同进化学习进行逆向渲染
  • 批准号:
    1617767
  • 财政年份:
    2016
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant

相似国自然基金

Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:

相似海外基金

CAREER: Toward Smart Surface Acoustic Wave Devices with Gate-Tunability
职业:开发具有栅极可调谐性的智能表面声波器件
  • 批准号:
    2337069
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
CAREER: Hybrid Surface Coating Toward Corrosion-Controlled Magnesium-Based Implants
职业:针对腐蚀控制镁基植入物的混合表面涂层
  • 批准号:
    2339911
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
CAREER: A Bottom Up pAproach Toward Understanding the Sunlight Driven Mechanisms and Pathways for the Release of Metals from Petroleum.
职业:一种自下而上的方法来了解阳光驱动的机制和从石油中释放金属的途径。
  • 批准号:
    2340743
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
The Information-Attention Tradeoff: Toward an Understanding of the Fundamentals of Online Attention
信息与注意力的权衡:了解在线注意力的基本原理
  • 批准号:
    2343858
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
CAREER: Toward Power Delivery Network-aware Hardware Security
职业:迈向电力传输网络感知硬件安全
  • 批准号:
    2338069
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Toward Trustworthy Generative AI by Integrating Large Language Model with Knowledge Graph
通过将大型语言模型与知识图相结合,迈向可信赖的生成式人工智能
  • 批准号:
    24K20834
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Tuning Precision Fabricated Liquid Crystal Adsorbents - Toward Tailored Adsorption of Per- and Polyfluorinated Alkyl Substances
调整精密制造的液晶吸附剂 - 针对全氟和多氟烷基物质的定制吸附
  • 批准号:
    24K17729
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Toward next-generation flexible and interpretable deep learning: A novel evolutionary wide dendritic learning
迈向下一代灵活且可解释的深度学习:一种新颖的进化广泛的树突学习
  • 批准号:
    23K24899
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Mentored Excellence Toward Research and Industry Careers 2
指导卓越研究和行业职业 2
  • 批准号:
    2322416
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Toward a more complete understanding of coastal upwelling dynamics
更全面地了解沿海上升流动力学
  • 批准号:
    2343008
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了