Nanochemical Control of Crystal Structure and Heterostructuring in Metal Chalcogenides

金属硫属化物晶体结构和异质结构的纳米化学控制

基本信息

  • 批准号:
    1904122
  • 负责人:
  • 金额:
    $ 49.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

Non-Technical SummaryMetal sulfides and related compounds are useful materials for a wide range of applications, including solar cells, thermoelectric refrigerators, displays, data storage, and catalysis. To advance these and other applications, it is important to be able to design and make materials in ways that allow precise control over the features that define their properties. In this project, which is supported by the Solid State and Materials Chemistry program in the Division of Materials Research, the PI and his group chemically manipulate nanoscale particles of metal sulfides and related compounds to produce new materials in a rational and controllable way. To do this, metal cations in the sulfide materials are replaced with other metal cations under mild reaction conditions to change the composition without significantly changing the arrangements of the atoms. New compounds can be produced when all of the metal cations in a particle are replaced, which provides an approach for rationally targeting a material that cannot be made by established methods. By replacing only a fraction of the metal cations, the particles that are formed contain both the original material and a new material, joined together through an interface. By performing this partial replacement reaction multiple times on the same particle, complex particles are produced that have many different materials and interfaces. The PI and his group are studying these complete and partial cation exchange reactions to better understand the factors that contribute to the formation of targeted products so that researchers can more efficiently design and make new materials that are predicted to be useful, but that cannot be made easily using current knowledge. The PI and his group use these reactions in undergraduate laboratories to introduce students to new ways of thinking about designing and making materials and also partner with faculty and students from local colleges through a regional undergraduate research network.Technical SummaryThis project, which is supported by the Solid State and Materials Chemistry program in the Division of Materials Research, provides new capabilities for the design and synthesis of metal chalcogenide nanoparticles using cation exchange reactions. In these reactions, cations in a colloidal metal chalcogenide nanoparticle are replaced by cations from solution while maintaining the anion framework. Crystal structure can therefore be preserved, and cation exchange reactions can be used to rationally target metastable phases (through complete cation exchange) and complex heterostructured nanoparticles (through sequential partial cation exchange). The PI and his group study cation exchange reactions of metal chalcogenide nanoparticles to understand how they proceed and can be controlled, to diversify the scope and complexity of accessible systems, and to access new materials with desired structures and properties. This is important for advancing the broad application space of metal chalcogenide nanomaterials. In this project, studies of model systems provide insights into how the crystal structure of a precursor nanoparticle can be retained in the product after complete cation exchange, revealing guidelines for rationally targeting metastable phases. Complementary studies of sequential partial cation exchange reactions uncover useful design rules for rationally synthesizing a library of heterostructured nanoparticles containing many interfaces and materials. Striped nanorod superlattices synthesized using these cation exchange reactions serve as a nanomodulated platform for studying low-temperature diffusion and crystallization. Integration of a nanocrystal cation exchange project into an undergraduate chemistry laboratory is introducing students to modern aspects of solid-state, nanomaterials, and inorganic reaction chemistry. Expansion of a regional undergraduate research network partners the PI and his group with faculty and students from local colleges who are also interested in metal chalcogenides and related nanomaterials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
金属硫化物及其相关化合物是广泛应用的有用材料,包括太阳能电池、热电冰箱、显示器、数据存储和催化。为了推进这些和其他应用,重要的是能够以允许精确控制定义其属性的特征的方式设计和制造材料。该项目由材料研究部固态与材料化学项目支持,PI和他的团队通过化学方法操纵金属硫化物和相关化合物的纳米级颗粒,以合理可控的方式生产新材料。要做到这一点,在温和的反应条件下,用其他金属阳离子取代硫化材料中的金属阳离子,以改变组成,而不显着改变原子的排列。当粒子中的所有金属阳离子被替换时,就可以产生新的化合物,这为合理地针对现有方法无法制造的材料提供了一种方法。通过替换一小部分金属阳离子,形成的颗粒既包含原始材料又包含新材料,通过界面连接在一起。通过在同一颗粒上多次进行这种部分取代反应,可以产生具有许多不同材料和界面的复杂颗粒。PI和他的团队正在研究这些完全和部分阳离子交换反应,以更好地了解有助于目标产品形成的因素,以便研究人员可以更有效地设计和制造预计有用的新材料,但利用现有知识无法轻松制造。PI和他的团队在本科生实验室中使用这些反应,向学生介绍设计和制造材料的新思路,并通过区域本科生研究网络与当地大学的教师和学生合作。该项目由材料研究部固态和材料化学项目支持,为利用阳离子交换反应设计和合成金属硫族化物纳米颗粒提供了新的能力。在这些反应中,胶体金属硫族纳米颗粒中的阳离子被溶液中的阳离子取代,同时保持阴离子框架。因此可以保留晶体结构,并且可以利用阳离子交换反应合理靶向亚稳相(通过完全阳离子交换)和复杂异质结构纳米颗粒(通过顺序部分阳离子交换)。PI和他的团队研究金属硫族化物纳米颗粒的阳离子交换反应,以了解它们是如何进行和可以控制的,使可访问系统的范围和复杂性多样化,并获得具有所需结构和性能的新材料。这对推进金属硫族化物纳米材料的广阔应用空间具有重要意义。在这个项目中,模型系统的研究提供了前驱体纳米颗粒在完全阳离子交换后如何在产品中保留晶体结构的见解,揭示了合理靶向亚稳相的指导方针。顺序部分阳离子交换反应的补充研究揭示了合理合成含有多种界面和材料的异质结构纳米颗粒库的有用设计规则。利用这些阳离子交换反应合成的条纹纳米棒超晶格为研究低温扩散和结晶提供了纳米调制平台。将纳米晶体阳离子交换项目整合到本科化学实验室中,将向学生介绍固态、纳米材料和无机反应化学的现代方面。区域本科生研究网络的扩展使PI和他的团队与当地大学的教师和学生合作,他们也对金属硫属化合物和相关纳米材料感兴趣。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Emergence and Control of Stacking Fault Formation during Nanoparticle Cation Exchange Reactions
  • DOI:
    10.1021/jacs.0c13072
  • 发表时间:
    2021-01-25
  • 期刊:
  • 影响因子:
    15
  • 作者:
    Butterfield, Auston G.;Alameda, Lucas T.;Schaak, Raymond E.
  • 通讯作者:
    Schaak, Raymond E.
Real-Time Monitoring of Competing Nanoparticle Formation Pathways during Cation Exchange Using Benchtop Light Scattering
  • DOI:
    10.1021/acs.chemmater.0c04938
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Gabriella A. Di Domizio;Lucas T. Alameda;J. Fanghanel;Robert W. Lord;JenniferR. Miller;R. Schaak
  • 通讯作者:
    Gabriella A. Di Domizio;Lucas T. Alameda;J. Fanghanel;Robert W. Lord;JenniferR. Miller;R. Schaak
Colloidal Nanoparticles of a Metastable Copper Selenide Phase with Near-Infrared Plasmon Resonance
  • DOI:
    10.1021/acs.chemmater.0c04058
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Robert W. Lord;J. Fanghanel;Cameron F. Holder;I. Dabo;R. Schaak
  • 通讯作者:
    Robert W. Lord;J. Fanghanel;Cameron F. Holder;I. Dabo;R. Schaak
Orthogonal reactivity and interface-driven selectivity during cation exchange of heterostructured metal sulfide nanorods
异质结构金属硫化物纳米棒阳离子交换过程中的正交反应性和界面驱动选择性
  • DOI:
    10.1039/d1cc07190d
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Fagan, Abigail M.;Steimle, Benjamin C.;Schaak, Raymond E.
  • 通讯作者:
    Schaak, Raymond E.
Experimental Insights into Partial Cation Exchange Reactions for Synthesizing Heterostructured Metal Sulfide Nanocrystals
  • DOI:
    10.1021/acs.chemmater.0c01388
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    B. Steimle;A. Fagan;Auston G. Butterfield;Robert W. Lord;Connor R. McCormick;Gabriella A. Di Domizio;R. Schaak
  • 通讯作者:
    B. Steimle;A. Fagan;Auston G. Butterfield;Robert W. Lord;Connor R. McCormick;Gabriella A. Di Domizio;R. Schaak
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Raymond Schaak其他文献

Raymond Schaak的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Raymond Schaak', 18)}}的其他基金

Chemical Insights into High Entropy Alloy Nanoparticle Formation and Reactivity
高熵合金纳米颗粒形成和反应性的化学见解
  • 批准号:
    2203353
  • 财政年份:
    2022
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Standard Grant
Cation Exchange Pathways for Constructing Metal Chalcogenide Nanoparticle Libraries
用于构建金属硫族化物纳米粒子库的阳离子交换途径
  • 批准号:
    2210442
  • 财政年份:
    2022
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Continuing Grant
Chemical Guidelines for Predictive Materials Integration in Hybrid Nanoparticles
混合纳米粒子中预测材料集成的化学指南
  • 批准号:
    1707830
  • 财政年份:
    2018
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Standard Grant
Nanochemical Control of Polymorphism in Transition Metal Chalcogenides
过渡金属硫属化物多晶型的纳米化学控制
  • 批准号:
    1607135
  • 财政年份:
    2016
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Continuing Grant
Total Synthesis Toolkit for Constructing Ternary Hybrid Nanoparticles
用于构建三元杂化纳米颗粒的全合成工具包
  • 批准号:
    1410061
  • 财政年份:
    2014
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Standard Grant
Chemical Pathways for Controlling Polymorphism in Nanoscale Metal Chalcogenides
控制纳米级金属硫属化物多晶型的化学途径
  • 批准号:
    1305564
  • 财政年份:
    2013
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Continuing Grant
Total Synthesis Toolkit for Constructing Multi-Catalytic Colloidal Hybrid Nanoparticles
用于构建多催化胶体杂化纳米粒子的全合成工具包
  • 批准号:
    1213475
  • 财政年份:
    2012
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Standard Grant
Chemically Programmed Construction of Complex Inorganic Nanostructures
复杂无机纳米结构的化学编程构建
  • 批准号:
    0845258
  • 财政年份:
    2009
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Continuing Grant
Nationwide Undergraduate Chemistry Video Competition
全国大学生化学视频大赛
  • 批准号:
    0839329
  • 财政年份:
    2008
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Standard Grant
CAREER: Low-Temperature Solution Synthesis Of Intermetallic Nanomaterials
职业:金属间纳米材料的低温溶液合成
  • 批准号:
    0748943
  • 财政年份:
    2007
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Continuing Grant

相似国自然基金

Cortical control of internal state in the insular cortex-claustrum region
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    25 万元
  • 项目类别:

相似海外基金

Collaborative Research: Thermochemistry and Chemical Kinetics of Halide-driven Crystal Structure Control of Manganese and Lanthanide Chalcogenide Nanocrystals
合作研究:卤化物驱动的锰和镧系硫族化物纳米晶体晶体结构控制的热化学和化学动力学
  • 批准号:
    2305153
  • 财政年份:
    2023
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Standard Grant
Collaborative Research: Thermochemistry and Chemical Kinetics of Halide-driven crystal Structure Control of Manganese and Lanthanide Chalcogenide Nanocrystals
合作研究:卤化物驱动的锰和镧系硫族化物纳米晶体的晶体结构控制的热化学和化学动力学
  • 批准号:
    2305154
  • 财政年份:
    2023
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Standard Grant
Collaborative Research: Thermochemistry and Chemical Kinetics of Halide-driven Crystal Structure Control of Manganese and Lanthanide Chalcogenide Nanocrystals
合作研究:卤化物驱动的锰和镧系硫族化物纳米晶体晶体结构控制的热化学和化学动力学
  • 批准号:
    2305155
  • 财政年份:
    2023
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Standard Grant
Correlation of concentration and orientation fluctuations in liquid crystal (LC)/solvent mixture and control of LC transition temperature
液晶 (LC)/溶剂混合物中浓度和取向波动的相关性以及 LC 转变温度的控制
  • 批准号:
    23K03346
  • 财政年份:
    2023
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Crystal Growth Control in Aqueous Ceramic Syntheses Using Micropatterns of Ultrathin Water Layers
使用超薄水层微图案控制水性陶瓷合成中的晶体生长
  • 批准号:
    23K17960
  • 财政年份:
    2023
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Creation of technology to control frost damage in concrete structures using ice crystal control agents
创建使用冰晶控制剂控制混凝土结构冻害的技术
  • 批准号:
    22H01567
  • 财政年份:
    2022
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of GaN CMOS Monolithic Integrated Circuits Technology Using Crystal Hetero-Polarity Control
利用晶体异质性控制的GaN CMOS单片集成电路技术的开发
  • 批准号:
    22KK0055
  • 财政年份:
    2022
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Quantum Control of Vanadium Nuclear Spin Registers Surrounding a Single Ytterbium Ion in a Crystal
晶体中单个镱离子周围钒核自旋寄存器的量子控制
  • 批准号:
    2210570
  • 财政年份:
    2022
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Standard Grant
Quantum properties of true topological semimetal of single-crystal RTeSb with precise symmetric decision and carrier control.
具有精确对称决策和载流子控制的单晶 RTeSb 真拓扑半金属的量子特性。
  • 批准号:
    22K03528
  • 财政年份:
    2022
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Induction and Control of Photophysical Properties by Asymmetric Crystal Structures
不对称晶体结构对光物理性质的诱导和控制
  • 批准号:
    22K05254
  • 财政年份:
    2022
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了