CAREER: Adversarial Artificial Intelligence for Social Good
职业:对抗性人工智能造福社会
基本信息
- 批准号:1905558
- 负责人:
- 金额:$ 44.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The success of AI technologies has resulted in their widespread deployment, with algorithms for reasoning under uncertainty, such as machine learning, having a particularly high impact. A challenge that is often ignored, however, is the adversarial nature of many domains, in which social, economic, and political interests may try to manipulate intelligent systems into making costly mistakes. While AI has a long history in playing adversarial games, such as chess and poker, the approaches have not been appropriate for many real-world situations. The goal of the proposed research is to develop a general framework for adversarial AI that is far broader in scope and applicability, building on insights from game theory, AI planning, and cybersecurity.A key modeling insight of the proposed research is that attacks across a broad array of settings can be modeled as planning problems, so that robust algorithms can be fundamentally viewed as interdicting attack plans. Our research will develop new foundational techniques for scalable plan interdiction under uncertainty, building off of the framework of Stackelberg games. Proposed techniques will leverage a combination of abstraction, factored representation of state, and value function approximation. In addition, novel scalable algorithms will be developed for multi-stage interdiction problems, modeled as sequential stochastic games, considering both perfect and imperfect information. Moreover, the research will make novel modeling and algorithmic contributions in multi-defender and multi-attacker interdiction games. Finally, in the more applied arena, the research will make significant intellectual contributions in applying advances in adversarial AI to model problems exhibiting important adversarial aspects, such as privacy-preserving data sharing, access control and audit policies, and vaccine design.
人工智能技术的成功导致了它们的广泛部署,机器学习等不确定性推理算法的影响尤其大。然而,一个经常被忽视的挑战是许多领域的对抗性,在这些领域中,社会、经济和政治利益可能试图操纵智能系统犯下代价高昂的错误。虽然人工智能在对抗游戏(如象棋和扑克)方面有着悠久的历史,但这种方法并不适用于许多现实世界的情况。拟议研究的目标是建立在博弈论、人工智能规划和网络安全的见解基础上,为对抗性人工智能开发一个范围和适用性更广的通用框架。提出的研究的一个关键建模见解是,跨越广泛设置的攻击可以建模为规划问题,因此健壮的算法可以从根本上被视为拦截攻击计划。我们的研究将在Stackelberg游戏框架的基础上,为不确定性下的可扩展计划拦截开发新的基础技术。提出的技术将利用抽象、状态的因子表示和值函数近似的组合。此外,将开发新的可扩展算法用于多阶段拦截问题,将其建模为顺序随机博弈,同时考虑完全和不完全信息。此外,该研究将在多防御者和多攻击者拦截博弈中做出新的建模和算法贡献。最后,在更多的应用领域,该研究将在将对抗性人工智能的进展应用于展示重要对抗性方面的建模问题方面做出重大的智力贡献,例如保护隐私的数据共享、访问控制和审计政策以及疫苗设计。
项目成果
期刊论文数量(73)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Strategic Evasion of Centrality Measures
战略性规避中心性措施
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Waniek, Marcin;Wiznica, Jan;Zhou, Kai;Vorobeychik, Yevgeniy;Rahwan, Talal;Michalak, Tomasz
- 通讯作者:Michalak, Tomasz
Learning Binary Multi-Scale Games on Networks.
学习网络上的二进制多尺度博弈。
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Yu, Sixie;Brantingham, Jeffrey;Valasik, Matthew;Vorobeychik, Yevgeniy
- 通讯作者:Vorobeychik, Yevgeniy
On Algorithmic Decision Procedures in Emergency Response Systems in Smart and Connected Communities
智能互联社区应急响应系统的算法决策程序
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Pettet, Geoffrey;Mukhopadhyay, Ayan;Kochenderfer, Mykel;Vorobeychik, Yevgeniy;Dubey, Abhishek
- 通讯作者:Dubey, Abhishek
Learning Generative Deception Strategies in Combinatorial Masking Games
学习组合掩蔽游戏中的生成欺骗策略
- DOI:10.1007/978-3-030-90370-1_6
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Wu, Junlin;Kamhoua, Charles;Kantarcioglu, Murat;Vorobeychik, Yevgeniy
- 通讯作者:Vorobeychik, Yevgeniy
Controlling Elections through Social Influence
通过社会影响力控制选举
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Wilder, Bryan;Vorobeychik, Yevgeniy
- 通讯作者:Vorobeychik, Yevgeniy
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yevgeniy Vorobeychik其他文献
Computing Randomized Security Strategies in Networked Domains
计算网络域中的随机安全策略
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Joshua Letchford;Yevgeniy Vorobeychik - 通讯作者:
Yevgeniy Vorobeychik
Resilient distributed consensus for tree topology
树形拓扑的弹性分布式共识
- DOI:
10.1145/2566468.2566485 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
M. Yampolskiy;Yevgeniy Vorobeychik;X. Koutsoukos;P. Horváth;Heath J. LeBlanc;J. Sztipanovits - 通讯作者:
J. Sztipanovits
Non-Cooperative Team Formation and a Team Formation Mechanism
非合作组队与组队机制
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
M. Chambers;Chen Hajaj;Greg Leo;Jian Lou;Martin Van der Linden;Yevgeniy Vorobeychik;M. Wooders - 通讯作者:
M. Wooders
Feature Conservation in Adversarial Classifier Evasion: A Case Study
对抗性分类器规避中的特征守恒:案例研究
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Liang Tong;Bo Li;Chen Hajaj;Yevgeniy Vorobeychik - 通讯作者:
Yevgeniy Vorobeychik
Stochastic search methods for nash equilibrium approximation in simulation-based games
基于模拟的博弈中纳什均衡近似的随机搜索方法
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Yevgeniy Vorobeychik;Michael P. Wellman - 通讯作者:
Michael P. Wellman
Yevgeniy Vorobeychik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yevgeniy Vorobeychik', 18)}}的其他基金
Travel: Doctoral Consortium at the 23rd International Conference on Autonomous Agents and Multiagent Systems
旅行:博士联盟出席第 23 届自主代理和多代理系统国际会议
- 批准号:
2341227 - 财政年份:2024
- 资助金额:
$ 44.75万 - 项目类别:
Standard Grant
RI: Small: Large-Scale Game-Theoretic Reasoning with Incomplete Information
RI:小型:不完整信息的大规模博弈论推理
- 批准号:
2214141 - 财政年份:2023
- 资助金额:
$ 44.75万 - 项目类别:
Standard Grant
FAI: FairGame: An Audit-Driven Game Theoretic Framework for Development and Certification of Fair AI
FAI:FairGame:用于公平人工智能开发和认证的审计驱动的博弈论框架
- 批准号:
1939677 - 财政年份:2020
- 资助金额:
$ 44.75万 - 项目类别:
Standard Grant
RI: Small: Protecting Social Choice Mechanisms from Malicious Influence
RI:小:保护社会选择机制免受恶意影响
- 批准号:
1903207 - 财政年份:2019
- 资助金额:
$ 44.75万 - 项目类别:
Standard Grant
CAREER: Adversarial Artificial Intelligence for Social Good
职业:对抗性人工智能造福社会
- 批准号:
1649972 - 财政年份:2017
- 资助金额:
$ 44.75万 - 项目类别:
Continuing Grant
Doctoral Mentoring Consortium at the Sixteenth International Conference on Autonomous Agents and Multi-Agent Systems
博士生导师联盟出席第十六届自主代理和多代理系统国际会议
- 批准号:
1727266 - 财政年份:2017
- 资助金额:
$ 44.75万 - 项目类别:
Standard Grant
Integrated Safety Incident Forecasting and Analysis
综合安全事件预测与分析
- 批准号:
1640624 - 财政年份:2016
- 资助金额:
$ 44.75万 - 项目类别:
Standard Grant
RI: Small: Theory and Application of Mechanism Design for Team Formation
RI:小:团队形成机制设计理论与应用
- 批准号:
1526860 - 财政年份:2015
- 资助金额:
$ 44.75万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
- 批准号:
2335411 - 财政年份:2024
- 资助金额:
$ 44.75万 - 项目类别:
Standard Grant
SBIR Phase I: High Fidelity Climate Simulation Powered by Generative Adversarial Networks
SBIR 第一阶段:由生成对抗网络提供支持的高保真气候模拟
- 批准号:
2335370 - 财政年份:2024
- 资助金额:
$ 44.75万 - 项目类别:
Standard Grant
Robust Defences against Adversarial Machine Learning for UAV Systems
针对无人机系统对抗性机器学习的稳健防御
- 批准号:
LP230100083 - 财政年份:2024
- 资助金额:
$ 44.75万 - 项目类别:
Linkage Projects
Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
- 批准号:
2335412 - 财政年份:2024
- 资助金额:
$ 44.75万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: EDU: Adversarial Malware Analysis - An Artificial Intelligence Driven Hands-On Curriculum for Next Generation Cyber Security Workforce
协作研究:SaTC:EDU:对抗性恶意软件分析 - 下一代网络安全劳动力的人工智能驱动实践课程
- 批准号:
2230609 - 财政年份:2023
- 资助金额:
$ 44.75万 - 项目类别:
Standard Grant
Adversarial Learning Methods for Modeling and Inverse Design of Soft Materials
软材料建模和逆向设计的对抗性学习方法
- 批准号:
2306101 - 财政年份:2023
- 资助金额:
$ 44.75万 - 项目类别:
Standard Grant
ATD:Understanding Adversarial Examples in Neural Network: Theory and Algorithms
ATD:理解神经网络中的对抗性例子:理论和算法
- 批准号:
2318926 - 财政年份:2023
- 资助金额:
$ 44.75万 - 项目类别:
Standard Grant
Property-Driven Quality Assurance of Adversarial Robustness of Deep Neural Networks
深度神经网络对抗鲁棒性的属性驱动质量保证
- 批准号:
23K11049 - 财政年份:2023
- 资助金额:
$ 44.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Pure transformer encoder-based generative adversarial networks for molecular generation
用于分子生成的基于纯变压器编码器的生成对抗网络
- 批准号:
23KF0063 - 财政年份:2023
- 资助金额:
$ 44.75万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Adversarial Exampleを用いた新しい緑内障性眼底変化の特徴の発見
使用对抗性例子发现青光眼眼底变化的新特征
- 批准号:
23K11150 - 财政年份:2023
- 资助金额:
$ 44.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




