Collaborative Research: Transfer Printed, Single-Crystalline Si Nanomesh Thin Films
合作研究:转移印刷单晶硅纳米网薄膜
基本信息
- 批准号:1905741
- 负责人:
- 金额:$ 19.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-technical description: Stretchable electronics have emerged as promising platforms for many important areas such as bio-mimetics, health monitoring, biomedical therapeutics, and soft robotics. This project investigates a set of foundational materials science problems to, for the first time, establish a new electronic materials platform - Si nanomeshes - for next-generation stretchable electronics. The transformative aspect of this project arises from the broad utility of the resulting design and engineering knowledge for nanomesh electronic materials, having profound impacts to not only fundamental materials science but also a broad range of applications in human-electronic interfaces and smart robots. The collaborative team also utilizes this project to integrate creative educational activities with cutting-edge research at multiple levels through: (1) engaging K-12 students via summer research and exhibiting at Oklahoma WONDERtorium Children's museum; (2) actively attracting undergraduate students for early research; and (3) the continuous curriculum development at both Northeastern University and Oklahoma State University to expand capacity in the soft electronic materials field. Technical description: Stretchable electronics research has long been facing the dichotomy between device performance and density. In the past decade, there has been significant progress in realizing stretchable semiconductors, however, existing approaches are still incomplete when high-density, high-performance stretchable electronics are needed. On the basis of strong preliminary results from the research team, the principal investigators hypothesize that with tailored nanomesh geometries and engineered sidewall surface states, Si nanomeshes can achieve simultaneously large stretchability, high mobility and high reliability that are needed for high-density stretchable electronics. Through both theoretical and experimental investigations, this project aims to investigate and establish the interrelationship of structure-processing-properties of Si nanomeshes for stretchable devices. Key structure variables to investigate include in-plane nanomesh pattern, out-of-plane materials stacking and sidewall surface states, while main properties targeted are mechanical flexibility, stretchability, and carrier transport mobilities. The project then achieves Si nanomeshes with desired mesh patterns through viable top-down approaches, prints and fabricates sidewall engineered Si-nanomesh based stretchable devices. A set of combined optical and electrical characterizations systematically investigate the properties of sidewall-engineered Si nanomeshes under stretching and scaling. Besides potential applications for high-performance stretchable electronics, this semiconductor nanomesh concept provides a new platform for materials engineering, and is expected to yield a new family of stretchable materials having tunable electronic and optoelectronic properties with customized nanostructures.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:可拉伸电子产品已经成为许多重要领域的有前途的平台,如仿生学,健康监测,生物医学治疗和软机器人。该项目研究了一系列基础材料科学问题,首次为下一代可拉伸电子产品建立了一个新的电子材料平台——硅纳米网。该项目的变革方面源于纳米电子材料的设计和工程知识的广泛应用,不仅对基础材料科学产生了深远的影响,而且对人机界面和智能机器人的广泛应用产生了深远的影响。合作团队还利用该项目将创造性教育活动与多个层面的前沿研究结合起来,通过以下方式:(1)通过夏季研究吸引K-12学生,并在俄克拉何马州WONDERtorium儿童博物馆展出;(2)积极吸引本科生进行前期研究;(3)东北大学和俄克拉荷马州立大学的持续课程开发,以扩大软电子材料领域的能力。技术描述:可拉伸电子研究一直面临器件性能和密度的二分法。在过去的十年中,在实现可拉伸半导体方面取得了重大进展,然而,当需要高密度、高性能的可拉伸电子器件时,现有的方法仍然不完整。基于研究团队强有力的初步结果,主要研究人员假设,通过定制纳米网几何形状和工程侧壁表面状态,Si纳米网可以同时实现高密度可拉伸电子器件所需的大拉伸性、高移动性和高可靠性。本项目旨在通过理论和实验研究,研究和建立可拉伸器件用硅纳米网的结构-加工-性能之间的相互关系。研究的关键结构变量包括面内纳米网格模式、面外材料堆积和侧壁表面状态,而主要特性是机械柔韧性、拉伸性和载流子迁移能力。然后,该项目通过可行的自上而下的方法实现具有所需网格模式的硅纳米网格,打印和制造基于硅纳米网格的侧壁工程可拉伸设备。一套综合的光学和电学表征系统地研究了侧壁工程硅纳米网在拉伸和缩放下的性能。除了高性能可拉伸电子学的潜在应用之外,这种半导体纳米网概念为材料工程提供了一个新的平台,并有望产生一系列具有可调谐电子和光电子特性的可拉伸材料,并具有定制的纳米结构。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nanomeshed Si nanomembranes
- DOI:10.1038/s41528-019-0053-5
- 发表时间:2019-05
- 期刊:
- 影响因子:14.6
- 作者:Xun Han;Kyung Jin Seo;Yi Qiang;Zeping Li;S. Vinnikova;Yiding Zhong;Xuanyi Zhao;Peijie Hao;Shuodao Wang;Hui Fang
- 通讯作者:Xun Han;Kyung Jin Seo;Yi Qiang;Zeping Li;S. Vinnikova;Yiding Zhong;Xuanyi Zhao;Peijie Hao;Shuodao Wang;Hui Fang
Mechanics of Regular-Shape Nanomeshes for Transparent and Stretchable Devices
- DOI:10.1115/1.4047777
- 发表时间:2020-10
- 期刊:
- 影响因子:0
- 作者:S. Vinnikova;H. Fang;Shuodao Wang
- 通讯作者:S. Vinnikova;H. Fang;Shuodao Wang
Electrochemically triggered degradation of silicon membranes for smart on-demand transient electronic devices
用于智能按需瞬态电子设备的硅膜电化学触发降解
- DOI:10.1088/1361-6528/ab2853
- 发表时间:2019-09-27
- 期刊:
- 影响因子:3.5
- 作者:Chen, Yaoxu;Wang, Huachun;Yin, Lan
- 通讯作者:Yin, Lan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shuodao Wang其他文献
Mechanics of Curvilinear Electronics and Transfer Printing
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Shuodao Wang - 通讯作者:
Shuodao Wang
Erratum: “Kinetically controlled, adhesiveless transfer printing using microstructured stamps” [Appl. Phys. Lett. 94, 113502 (2009)]
勘误表:“使用微结构印模进行动力学控制的无胶转印”[Appl. Phys. 94, 113502 (2009)]
- DOI:
10.1063/1.3137183 - 发表时间:
2009 - 期刊:
- 影响因子:4
- 作者:
Tae;A. Carlson;Jong;S. Won;Shuodao Wang;Yonggang Huang;J. Rogers - 通讯作者:
J. Rogers
Adhesion-governed buckling of thin-film electronics on soft tissues
软组织上薄膜电子器件的粘附控制屈曲
- DOI:
10.1016/j.taml.2015.11.010 - 发表时间:
2016 - 期刊:
- 影响因子:3.4
- 作者:
Shuodao Wang - 通讯作者:
Shuodao Wang
Analytical study of wrinkling in thin-film-on-elastomer system with finite substrate thickness
有限基材厚度弹性体薄膜系统起皱的分析研究
- DOI:
10.1007/s10483-017-2189-6 - 发表时间:
2017-04 - 期刊:
- 影响因子:0
- 作者:
Xianhong Meng;Guanyu Liu;Zihao Wang;Shuodao Wang - 通讯作者:
Shuodao Wang
Flexible, Stretchable, and Biodegradable Thin-Film Silicon Photovoltaics
柔性、可拉伸和可生物降解的薄膜硅光伏
- DOI:
10.1007/978-3-319-69703-1_6 - 发表时间:
2018 - 期刊:
- 影响因子:41.2
- 作者:
Xing Sheng;Shuodao Wang;Lan Yin - 通讯作者:
Lan Yin
Shuodao Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shuodao Wang', 18)}}的其他基金
CAREER: Determine the Roles of Material Heterogeneity and Thickness Variability on the Stability of Thin Membranes
职业:确定材料异质性和厚度变异性对薄膜稳定性的作用
- 批准号:
1847062 - 财政年份:2019
- 资助金额:
$ 19.88万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Multiscale study of oscillating flow and multiphase heat transfer in porous media
合作研究:多孔介质中振荡流和多相传热的多尺度研究
- 批准号:
2414527 - 财政年份:2024
- 资助金额:
$ 19.88万 - 项目类别:
Standard Grant
Collaborative Research: Supercritical Fluids and Heat Transfer - Delineation of Anomalous Region, Ultra-long Distance Gas Transport without Recompression, and Thermal Management
合作研究:超临界流体与传热——异常区域的描绘、无需再压缩的超长距离气体传输以及热管理
- 批准号:
2327571 - 财政年份:2023
- 资助金额:
$ 19.88万 - 项目类别:
Standard Grant
Collaborative Research: Applying a novel approach to link microbial growth efficiency, function and energy transfer in the ocean
合作研究:应用一种新方法将海洋中微生物的生长效率、功能和能量转移联系起来
- 批准号:
2219796 - 财政年份:2023
- 资助金额:
$ 19.88万 - 项目类别:
Standard Grant
Collaborative Research: Investigation of Mass and Energy Transfer Mechanisms in Stimuli-Responsive Smart Sorbents for Direct Air Capture
合作研究:用于直接空气捕获的刺激响应智能吸附剂的质量和能量传递机制的研究
- 批准号:
2232875 - 财政年份:2023
- 资助金额:
$ 19.88万 - 项目类别:
Standard Grant
Collaborative Research: Investigation of Mass and Energy Transfer Mechanisms in Stimuli-Responsive Smart Sorbents for Direct Air Capture
合作研究:用于直接空气捕获的刺激响应智能吸附剂的质量和能量传递机制的研究
- 批准号:
2230593 - 财政年份:2023
- 资助金额:
$ 19.88万 - 项目类别:
Standard Grant
Collaborative Research: Applying a novel approach to link microbial growth efficiency, function and energy transfer in the ocean
合作研究:应用一种新方法将海洋中微生物的生长效率、功能和能量转移联系起来
- 批准号:
2219795 - 财政年份:2023
- 资助金额:
$ 19.88万 - 项目类别:
Standard Grant
CAS: Collaborative Research: Photophysics and Electron Transfer Reactivity of Ion Radical Excited States
CAS:合作研究:离子自由基激发态的光物理学和电子转移反应性
- 批准号:
2246509 - 财政年份:2023
- 资助金额:
$ 19.88万 - 项目类别:
Standard Grant
Collaborative Research: Supercritical Fluids and Heat Transfer - Delineation of Anomalous Region, Ultra-long Distance Gas Transport without Recompression, and Thermal Management
合作研究:超临界流体与传热——异常区域的描绘、无需再压缩的超长距离气体传输以及热管理
- 批准号:
2327572 - 财政年份:2023
- 资助金额:
$ 19.88万 - 项目类别:
Standard Grant
Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
- 批准号:
2324490 - 财政年份:2023
- 资助金额:
$ 19.88万 - 项目类别:
Continuing Grant
Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
- 批准号:
2324489 - 财政年份:2023
- 资助金额:
$ 19.88万 - 项目类别:
Continuing Grant