Connecting Junction Molecular Orientation to Excited State Structure and Dynamics in Organic Devices
将结分子取向与有机器件中的激发态结构和动力学联系起来
基本信息
- 批准号:1905790
- 负责人:
- 金额:$ 47.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Printable electronic devices based on flexible organic-based materials have the potential to revolutionize how we renewably harvest and store energy. The arrangement of plastic molecules at interfaces between layers can determine whether the device performs well. However, there is currently limited knowledge of how such arrangements govern device performance. In this project, solar cells and light emitters printed from plastic inks are studied. These devices have important interfaces where power is generated and light is emitted. This project involves varying the arrangement of the molecules at these interfaces, monitored by powerful X-ray techniques. Correspondingly, power- and light-generating processes are measured and related to the arrangement of the molecules. The result will be a new capability to tailor molecule arrangements at interfaces to maximize device performance. Such a capability will enable flexible and printable technologies to dramatically reduce the cost of energy. Students involved in this project will take part in the Science Ambassadors Program by developing a plastic solar cell lab for high school students. This activity will demonstrate both the fundamental science and the potential of these technologies. The interdisciplinary and collaborative nature of the project will provide the students with expertise to communicate diverse viewpoints that will be required of the next generation of scientists.Optoelectronic properties in printable organic devices could be tailored for revolutionary applications through simple processing techniques that engineer interfacial structures, but there is a gap in knowledge to realize this goal. This gap is due to the difficulty in quantitatively resolving buried organic interfacial nanostructure and directly correlating this to fundamental device processes. In the proposed work, a suite of recently developed resonant X-ray nanoprobes will be used to quantify molecular orientation, aggregation, and mixing local to buried organic interfaces. These measurements will be combined with advanced studies of excited state structure and dynamics on the exact same device - eliminating uncertainties related to sample variability. The objective is to define quantitative relationships on how molecular ordering at buried organic junctions controls excited state dynamics connected to performance. It will be accomplished by systematically investigating all structural cases in planar junctions and extending this information to printed 3D heterojunctions. Our aim is not only to establish the general concepts, but to define the functional form of these relationships to enable designed properties in high-performing organic devices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
基于柔性有机材料的可打印电子设备有可能彻底改变我们可再生能源的收集和储存方式。塑料分子在层与层之间的界面上的排列可以决定设备是否表现良好。然而,目前对这种安排如何管理设备性能的知识有限。在这个项目中,研究了用塑料油墨印刷的太阳能电池和光发射器。这些器件具有重要的接口,在这些接口处产生电力并发射光。该项目涉及改变这些界面上分子的排列,并通过强大的X射线技术进行监测。相应地,功率和光产生过程被测量并与分子的排列相关。其结果将是一种新的能力,在界面上定制分子排列,以最大限度地提高器件性能。这种能力将使灵活和可打印的技术能够大大降低能源成本。参与该项目的学生将参加科学大使计划,为高中生开发一个塑料太阳能电池实验室。这项活动将展示基础科学和这些技术的潜力。该项目的跨学科和协作性质将为学生提供专业知识,以交流下一代科学家所需的各种观点。通过设计界面结构的简单加工技术,可打印有机器件的光电特性可以为革命性应用量身定制,但实现这一目标的知识存在差距。这一差距是由于难以定量解析掩埋的有机界面纳米结构,并将其与基本器件工艺直接相关。在拟议的工作中,一套最近开发的共振X射线纳米探针将用于量化分子取向,聚集和混合本地掩埋的有机界面。这些测量将与激发态结构和动力学的高级研究相结合,在完全相同的设备上-消除与样品变异性有关的不确定性。我们的目标是定义如何在掩埋的有机结控制激发态动力学连接到性能的分子排序的定量关系。它将通过系统地研究平面结中的所有结构情况并将此信息扩展到打印的3D异质结来完成。我们的目标不仅是建立一般的概念,但定义这些关系的功能形式,使设计的性能在高性能的有机器件。这个奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Electrical edge effect induced photocurrent overestimation in low-light organic photovoltaics
低光有机光伏中电边缘效应引起的光电流高估
- DOI:10.1016/j.joule.2022.06.008
- 发表时间:2022
- 期刊:
- 影响因子:39.8
- 作者:Xiaobo Zhou;Chao Zhao;Awwad Nasser Alotaibi;Hongbo Wu;Hafiz Bilal Naveed;Baojun Lin;Ke Zhou;Zaifei Ma;Brian A. Collins;Wei Ma
- 通讯作者:Wei Ma
Solvent‐Induced Polymorphism in Non‐Fullerene‐Based Organic Solar Cells
非富勒烯有机太阳能电池中溶剂诱导的多晶型现象
- DOI:10.1002/solr.202200819
- 发表时间:2022
- 期刊:
- 影响因子:7.9
- 作者:Xin, Jingming;Zhao, Heng;Xue, Jingwei;Seibt, Susanne;Collins, Brian A.;Ma, Wei
- 通讯作者:Ma, Wei
Pressure-assisted thermal sterilization of avocado puree in high barrier polymeric packaging
- DOI:10.1016/j.lwt.2021.112960
- 发表时间:2021-12-17
- 期刊:
- 影响因子:6
- 作者:Al-Ghamdi, Saleh;Sonar, Chandrashekhar R.;Sablani, Shyam S.
- 通讯作者:Sablani, Shyam S.
Evidence for Field-Dependent Charge Separation Caused by Mixed Phases in Polymer–Fullerene Organic Solar Cells
聚合物富勒烯有机太阳能电池中混合相引起场相关电荷分离的证据
- DOI:10.1021/acs.jpclett.0c03863
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Dhakal, Prabodh;Ferron, Thomas;Alotaibi, Awwad;Murcia, Victor;Alqahtani, Obaid;Collins, Brian A.
- 通讯作者:Collins, Brian A.
On the Interplay between CT and Singlet Exciton Emission in Organic Solar Cells with Small Driving Force and Its Impact on Voltage Loss
- DOI:10.1002/aenm.202200641
- 发表时间:2022-06-28
- 期刊:
- 影响因子:27.8
- 作者:Fritsch, Tobias;Kurpiers, Jona;Neher, Dieter
- 通讯作者:Neher, Dieter
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brian Collins其他文献
Cognitive Flexibility Theory: Hypermedia for Complex Learning, Adaptive Knowledge Application, and Experience Acceleration.
认知灵活性理论:用于复杂学习、自适应知识应用和体验加速的超媒体。
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
R. Spiro;Brian Collins;Jose Jagadish Thota;P. Feltovich - 通讯作者:
P. Feltovich
Development and Implementation of a Basic Veterinary Ultrasound Curriculum
基础兽医超声课程的开发和实施
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:1
- 作者:
Jessica L. Ward;Joyce Carnevale;Brian Collins;Jennifer Langel;Erin McQuinn;Julie Riha;Tamara Swor;M. Tropf;Rebecca A Walton - 通讯作者:
Rebecca A Walton
The Incidence of Radiation Induced Rib Fractures (RIRF) Following Stereotactic Body Radiation Therapy (SBRT) With Fiducial Tracking for Peripheral Stage I Non-small Cell Lung Cancer (NSCLC)
- DOI:
10.1378/chest.1993724 - 发表时间:
2014-10-01 - 期刊:
- 影响因子:
- 作者:
Shaan Kataria;Furhawn Shah;Nima Aghdam;Leonard Chen;Simeng Suy;Sean Collins;Ryan Malik;Cristina Reichner;Eric Anderson;Brian Collins - 通讯作者:
Brian Collins
Strategic use of index-based frost insurance to reduce financial risk and improve income stability for wheat producers in Australia
战略性地利用基于指数的霜冻保险来降低澳大利亚小麦生产者的金融风险并提高收入稳定性
- DOI:
10.1016/j.agsy.2025.104306 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:6.100
- 作者:
Jonathan Barratt;Jarrod Kath;Shahbaz Mushtaq;Brian Collins;Karine Chenu;Jack Christopher;Duc-Anh An-Vo - 通讯作者:
Duc-Anh An-Vo
Infant With Acute Respiratory Distress
- DOI:
10.1016/j.annemergmed.2016.07.011 - 发表时间:
2017-02-01 - 期刊:
- 影响因子:
- 作者:
James Miranda;Brian Collins;Gerald Wydro;Manish Garg - 通讯作者:
Manish Garg
Brian Collins的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brian Collins', 18)}}的其他基金
REU Site: The Physics of Waves from the Nanoscale to the Cosmic Scale
REU 站点:从纳米尺度到宇宙尺度的波物理学
- 批准号:
2349426 - 财政年份:2024
- 资助金额:
$ 47.97万 - 项目类别:
Standard Grant
Revealing the Nanomorphology and Excited State Dynamics Behind the Ternary Advantage in Organic Photovoltaics
揭示有机光伏三元优势背后的纳米形态和激发态动力学
- 批准号:
2247711 - 财政年份:2023
- 资助金额:
$ 47.97万 - 项目类别:
Standard Grant
REU Site: The Physics of Waves from the Nanoscale to the Cosmic Scale
REU 站点:从纳米尺度到宇宙尺度的波物理学
- 批准号:
2050886 - 财政年份:2021
- 资助金额:
$ 47.97万 - 项目类别:
Continuing Grant
MRI Consortium: Development of Environmental Control for Resonant X-ray Scattering on Organic Samples
MRI 联盟:有机样品共振 X 射线散射环境控制的发展
- 批准号:
1626566 - 财政年份:2016
- 资助金额:
$ 47.97万 - 项目类别:
Standard Grant
International Centre for Infrastructure Futures (ICIF)
国际基础设施期货中心 (ICIF)
- 批准号:
EP/K012347/1 - 财政年份:2013
- 资助金额:
$ 47.97万 - 项目类别:
Research Grant
相似国自然基金
单分子FRET用于DNA折纸阵列中的anti-junction可控机械化
学耦合研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
靶向DNA Holliday junction结构新配体的发现及抗非BRCA突变型三阴性乳腺癌的机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Holliday Junction解离酶RuvA在分枝杆菌噬菌体抗性中的作用与分子机理
- 批准号:82072246
- 批准年份:2020
- 资助金额:56 万元
- 项目类别:面上项目
Holliday junction解离酶Moc1调控叶绿体拟核分离的结构和分子机制研究
- 批准号:31971222
- 批准年份:2019
- 资助金额:60.0 万元
- 项目类别:面上项目
硫化叶菌Holliday junction解离酶Hje的体内功能与作用机制研究
- 批准号:31470184
- 批准年份:2014
- 资助金额:88.0 万元
- 项目类别:面上项目
柔嫩艾美耳球虫子孢子入侵关键结构 Moving Junction 的分子基础与功能研究
- 批准号:31201699
- 批准年份:2012
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
基于Junction tree推理的多运动平台分散式协同导航算法研究
- 批准号:61203200
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
古菌Hjm解旋酶参与复制叉回退和Holliday junction加工的机制
- 批准号:30870046
- 批准年份:2008
- 资助金额:35.0 万元
- 项目类别:面上项目
相似海外基金
Molecular mechanisms of gap junction promotion of lesion formation in Endometriosis
间隙连接促进子宫内膜异位症病变形成的分子机制
- 批准号:
10772708 - 财政年份:2023
- 资助金额:
$ 47.97万 - 项目类别:
Investigation of the molecular formations and the pathomechanisms of the neuromuscular junction
神经肌肉接头的分子形成和病理机制的研究
- 批准号:
23H02794 - 财政年份:2023
- 资助金额:
$ 47.97万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Dissecting the roles and molecular mechanisms of Wnt signal transduction at the Drosophila neuromuscular junction
剖析果蝇神经肌肉接头Wnt信号转导的作用和分子机制
- 批准号:
10527669 - 财政年份:2022
- 资助金额:
$ 47.97万 - 项目类别:
Molecular domains determining gap junction channel properties
决定间隙连接通道特性的分子域
- 批准号:
574488-2022 - 财政年份:2022
- 资助金额:
$ 47.97万 - 项目类别:
University Undergraduate Student Research Awards
Cancer progression-related translocation of gap junction protein into the Golgi apparatus – Elucidation of its molecular mechanism
癌症进展相关的间隙连接蛋白易位至高尔基体
- 批准号:
22K06996 - 财政年份:2022
- 资助金额:
$ 47.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular domains determining gap junction channel properties
决定间隙连接通道特性的分子域
- 批准号:
RGPIN-2020-05194 - 财政年份:2022
- 资助金额:
$ 47.97万 - 项目类别:
Discovery Grants Program - Individual
Development of Pillar-Type Molecular Wire Based on Molecular Junction Using Au-pi Bindings
基于 Au-pi 键合分子连接的柱型分子线的开发
- 批准号:
21K14602 - 财政年份:2021
- 资助金额:
$ 47.97万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Molecular mechanism of epithelial sheet formation and its repair through the tight junction
上皮片层形成及其通过紧密连接修复的分子机制
- 批准号:
21H02684 - 财政年份:2021
- 资助金额:
$ 47.97万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A Molecular Toolkit for Controlling and Probing Cell Junction-Actin Interactions
用于控制和探测细胞连接-肌动蛋白相互作用的分子工具包
- 批准号:
10276194 - 财政年份:2021
- 资助金额:
$ 47.97万 - 项目类别:
Molecular mechanism of tight junction maintenance by proteases
蛋白酶维持紧密连接的分子机制
- 批准号:
21K06156 - 财政年份:2021
- 资助金额:
$ 47.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)