Modeling and Simulation of Irradiance for Photobioreactors with Complex Geometry for Exploration of Algal Growth

用于探索藻类生长的复杂几何光生物反应器的辐照度建模和模拟

基本信息

项目摘要

As part of the bio-economy strategy of the federal and state governments of Germany, the supply of oil-based materials and energy sources is being increasingly converted to bio-based products. For this purpose, the residual biomass from agriculture is not enough. Microalgae are considered to be a promising alternative for biomass production without competing with areas for which already other options are planned. However, the benefits can only be implemented in closed photobioreactors (PBR).In order to establish PBR as an (cost) alternative coverage in industry, controlled entry of light is essential, in particularly for closed PBR with vast options for the light setup. Due to the high absorption and scattering behavior of algae, a very high light gradient is established in the reactor. As a result algae close to the reactor surface are exposed to light saturation, in contrast to the underlying, shaded algae exposed to a strong limit, which increases the relative proportion of breathing. Both effects lead to a reduction in efficiency. A homogenizing of the growth on the metabolic level, driven by a flow, is very energy intensive and crucial reason why PBR cannot be operated efficiently. Until today, there remains a lack of reliable simulation tools to predict the distribution of light in moving algae suspensions to which then algae growth models are associated. Finally, with it, reliable predictions about the biomass growth are obtained.This essential gap in the modeling and simulation of growth in PBR is aimed to be closed by this project through an integral mesoscopic modeling and the development of a multiphysics Lattice Boltzmann Method (LBM). The novelty lies in solving the light transport phenomena by an LBM-based algorithm. The subsequently coupling with LBM-based multiphase flow simulations, which reflect the CO2/O2 transport in the algae suspension, and an LBM-based algae particle simulation, which calculates dark/light cycles, is very promising.The project also includes the application of the prediction tool for algal growth to innovative, highly complex spongy PBR geometries. In modern approaches increasingly photoconductive reactor elements are used as part of the reactor wall or explicitly introduced structure. Thereby, the goal is increasing the efficiency significantly by a very homogeneous illumination. The validation of the developed methodology will be based on simple test scenarios such as classical reactor geometries, but also on new and innovative sponge-like structures, so that in the end of the project both, a reliable and robust simulation tool for algae growth in arbitrarily complex PBR geometries and new insights in the interplay of light and fluid dynamics in PBR design, is expected.
作为德国联邦和州政府生物经济战略的一部分,石油基材料和能源的供应越来越多地转化为生物基产品。为此目的,农业剩余的生物质是不够的。微藻被认为是生物质生产的一种有前途的替代办法,而不会与已经计划采用其他办法的地区竞争。然而,这些益处只能在封闭式光生物反应器(PBR)中实现。为了将PBR建立为工业中的(成本)替代覆盖,光的受控进入是必不可少的,特别是对于具有大量光设置选项的封闭式PBR。由于藻类的高吸收和散射行为,在反应器中建立了非常高的光梯度。结果,靠近反应器表面的藻类暴露于光饱和,与下面的阴影藻类暴露于强限制相反,这增加了呼吸的相对比例。这两种效应都导致效率降低。由流动驱动的代谢水平上的生长的增加是非常能量密集的,也是PBR不能有效操作的关键原因。直到今天,仍然缺乏可靠的模拟工具来预测藻类生长模型所关联的移动藻类悬浮液中的光分布。最后,用它,可靠的预测生物量的增长是获得。这一重要的差距,在建模和模拟的增长PBR的目的是通过一个完整的介观建模和发展的多物理场格子玻尔兹曼方法(LBM),本项目被关闭。新颖之处在于通过基于LBM的算法来解决光传输现象。随后与基于LBM的多相流模拟(反映藻类悬浮液中的CO2/O2传输)和基于LBM的藻类颗粒模拟(计算暗/光循环)耦合,非常有前途。该项目还包括将藻类生长预测工具应用于创新的高度复杂的海绵状PBR几何形状。在现代方法中,越来越多的光电导反应器元件被用作反应器壁或明确引入的结构的一部分。因此,目标是通过非常均匀的照明来显著提高效率。开发的方法的验证将基于简单的测试场景,如经典的反应器几何形状,但也基于新的和创新的海绵状结构,因此,在项目结束时,一个可靠和强大的模拟工具,用于藻类生长在任意复杂的PBR几何形状和新的见解在PBR设计中光和流体动力学的相互作用,是预期的。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Radiative transfer lattice Boltzmann methods: 3D models and their performance in different regimes of radiative transfer
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Privatdozent Dr. Mathias Joachim Krause其他文献

Privatdozent Dr. Mathias Joachim Krause的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Privatdozent Dr. Mathias Joachim Krause', 18)}}的其他基金

Development of a multi-scale model for the adsorption of molecular target substances to magnetic carrier particles using the Lattice-Boltzmann methods
使用格子-玻尔兹曼方法开发分子目标物质吸附到磁性载体颗粒的多尺度模型
  • 批准号:
    256075891
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Fundamental investigation of particle-layer rearrangement events in ceramic wall flow filters by resolved particle simulations
通过解析颗粒模拟对陶瓷壁流过滤器中的颗粒层重排事件进行基础研究
  • 批准号:
    422374351
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
CFD-MRI Reactions – A Combined Measurement-Simulation Approach for Reactive Flow Characterization
CFD-MRI 反应 – 用于反应流表征的组合测量模拟方法
  • 批准号:
    517581625
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Increase of efficiency in phosphate recovery by understanding the interaction of flow and loading processes with modeling and simulation
通过建模和模拟了解流动和加载过程的相互作用,提高磷酸盐回收效率
  • 批准号:
    436212129
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Modelling and Simulation of Multidimensional Fractionation in Fine Particle Systems and their Application
细颗粒体系多维分级建模与仿真及其应用
  • 批准号:
    382064892
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似国自然基金

Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

Molecules for Quantum simulation
量子模拟分子
  • 批准号:
    MR/X033430/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
CAREER: Advances to the EMT Modeling and Simulation of Restoration Processes for Future Grids
职业:未来电网恢复过程的 EMT 建模和仿真的进展
  • 批准号:
    2338621
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Material Simulation-driven Electrolyte Designs in Intermediate-temperature Na-K / S Batteries for Long-duration Energy Storage
合作研究:用于长期储能的中温Na-K / S电池中材料模拟驱动的电解质设计
  • 批准号:
    2341994
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
EAGER: Liutex-based Sub-Grid Model for Large Eddy Simulation of Turbulent Flow
EAGER:基于 Liutex 的湍流大涡模拟子网格模型
  • 批准号:
    2422573
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Global spatially explicit gridded transport model coupled with an integrated assessment model: a new-generation simulation framework for transport decarbonization strategy
全球空间明确网格交通模型与综合评估模型相结合:新一代交通脱碳战略模拟框架
  • 批准号:
    23K28290
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
International Collaboration Towards Net Zero Computational Modelling and Simulation (CONTINENTS)
实现净零计算建模和仿真的国际合作(大陆)
  • 批准号:
    EP/Z531170/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
DXに基づく急性期病院の認知症ケア専門職連携を促進するSimulation Platformの開発
基于DX开发促进急症医院痴呆护理专业协作的模拟平台
  • 批准号:
    23K27913
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER:HCC: Using Virtual Reality Gaming to Develop a Predictive Simulation of Human-Building Interactions: Behavioral and Emotional Modeling for Public Space Design
职业:HCC:使用虚拟现实游戏开发人类建筑交互的预测模拟:公共空间设计的行为和情感建模
  • 批准号:
    2339999
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Travel: NSF Student Travel Grant for 2024 ACM SIGSIM Principles of Advanced Discrete Simulation (PADS)
旅行:2024 年 ACM SIGSIM 高级离散仿真原理 (PADS) 的 NSF 学生旅行补助金
  • 批准号:
    2416160
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
RAPID: Enhancing WUI Fire Assessment through Comprehensive Data and High-Fidelity Simulation
RAPID:通过综合数据和高保真模拟增强 WUI 火灾评估
  • 批准号:
    2401876
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了