Quantum plasmonics with extreme nonlinearities for on-chip supercontinuum generation

用于片上超连续谱生成的具有极端非线性的量子等离子体

基本信息

  • 批准号:
    1907423
  • 负责人:
  • 金额:
    $ 36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Nonlinear optics has been a rapidly growing scientific field in recent decades and holds promise for critical applications in optical information processing, telecommunications, and etc. Because the nonlinear coefficients for most materials are typically low, exploring new materials with higher nonlinear responses has always been one of the greatest challenges in this field. As a distinct research field, plasmonics has emerged as a novel approach to manipulate light at nanoscales. Recent advances in nanofabrication enable plasmonic structures at nanometer scales, leading to exceptionally high nonlinear responses due to the quantum size effect. This project aims to combine the field of quantum plasmonics with nonlinear optics to discover new optical materials with extremely high nonlinear responses and to apply such new materials for on-chip supercontinuum generation with an ultra-small footprint. This project involves fundamental science exploration, nano-material design and fabrications, on-chip supercontinuum generation device design and fabrication, and optical characterizations. This research will address fundamental issues at the cross-section of nanoplasmonics and nonlinear optics, and train graduate and undergraduate students in important areas of nanomaterials design and growth, optical characterization, device fabrication, nano-science, and nanotechnology. The transformative goal is to provide the scientific underpinnings of next generation integrated optical components based on engineered nanomaterials with extremely high nonlinearities. Research-based curriculum development, web-based dissemination of research results, journal publications and conference/workshop presentations, will impact more students including those at the pre-college level. Technical description. This project addresses a new way to create strong nonlinear responses in a quantum engineered system and how to use it to build an ultra-compact supercontinuum generation device. The nonlinear optical properties of metal quantum wells will be systematically investigated. A dynamic quantum electrostatic model will be developed to accurately describe and predict the nonlinear responses of the metal quantum well systems. The state-of-the-art quantum plasmonic films will be fabricated at feature size down to 1-3 nm. Based on our theoretical estimation and preliminary experimental results, the quantum plasmonic systems will lead to the record high third order nonlinear susceptibility. The proposed quantum plasmonic waveguide-based supercontinuum generation devices, if successfully demonstrated, would be the first supercontinuum light source with micrometer footprint, enabling new opportunities for high-density integration and on-chip applications. Other than proposing specific individual concept and device, the PI envisions this project as a paradigm shift in the way a nonlinear material is constructed and implemented. Due to the large transition matrix elements and the high electron density in ultrathin metal films, quantum plasmonic structures can be tailored to possess extremely high nonlinear responses at desired operation frequencies. The outcome of this research will fill up knowledge void in both fields of plasmonics and nonlinear optics and pave the way to a new generation of strong nonlinear materials that may find important applications in integrated nonlinear optics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非线性光学是近几十年来发展迅速的一个科学领域,在光学信息处理、电信等领域有着重要的应用前景。由于大多数材料的非线性系数通常很低,因此探索具有更高非线性响应的新材料一直是该领域最大的挑战之一。作为一个独特的研究领域,等离子体激元已经成为一种新的方法来操纵光在纳米尺度。纳米纤维的最新进展使等离子体结构在纳米尺度上,导致异常高的非线性响应,由于量子尺寸效应。该项目旨在将量子等离子体激元学领域与非线性光学结合联合收割机,以发现具有极高非线性响应的新光学材料,并将此类新材料应用于具有超小尺寸的片上超连续谱产生。该项目涉及基础科学探索、纳米材料设计和制造、片上超连续谱产生器件设计和制造以及光学特性。这项研究将解决纳米等离子体和非线性光学的横截面的基本问题,并培养研究生和本科生在纳米材料设计和生长,光学表征,器件制造,纳米科学和纳米技术的重要领域。变革性的目标是为基于具有极高非线性的工程纳米材料的下一代集成光学元件提供科学基础。以研究为基础的课程开发、研究成果的网络传播、期刊出版物和会议/讲习班演讲将影响更多的学生,包括大学预科学生。技术说明。该项目提出了一种在量子工程系统中产生强非线性响应的新方法,以及如何使用它来构建超紧凑的超连续谱产生设备。本文将系统地研究金属量子威尔斯阱的非线性光学性质。为了准确描述和预测金属量子阱系统的非线性响应,我们将建立一个动态量子静电模型。最先进的量子等离子体薄膜将以1-3 nm的特征尺寸制造。根据我们的理论估计和初步的实验结果,量子等离子体激元系统将导致创纪录的高三阶非线性极化率。所提出的基于量子等离子体波导的超连续谱产生设备如果成功演示,将成为第一个具有微米足迹的超连续谱光源,为高密度集成和片上应用带来新的机会。除了提出具体的个人概念和设备外,PI还将该项目视为非线性材料构建和实施方式的范式转变。由于大的过渡矩阵元素和高的电子密度的金属薄膜,量子等离子体激元结构可以被定制,在所需的操作频率具有极高的非线性响应。该研究成果将填补等离子体和非线性光学领域的知识空白,并为新一代强非线性材料铺平道路,这些材料可能在集成非线性光学中找到重要应用。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nonlinear Computational Edge Detection Metalens
  • DOI:
    10.1002/adfm.202204734
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    19
  • 作者:
    Junxiao Zhou;Junxiang Zhao;Qianyi Wu;Ching‐Fu Chen;M. Lei;Guanghao Chen;Fanglin Tian;Zhaowei Liu
  • 通讯作者:
    Junxiao Zhou;Junxiang Zhao;Qianyi Wu;Ching‐Fu Chen;M. Lei;Guanghao Chen;Fanglin Tian;Zhaowei Liu
Tunable topological phase transition in the telecommunication wavelength
电信波长中的可调谐拓扑相变
  • DOI:
    10.1364/ome.487619
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Tian, Fanglin;Zhou, Junxiao;Wang, Qiang;Liu, Zhaowei
  • 通讯作者:
    Liu, Zhaowei
Influence of Hafnium Defects on the Optical and Structural Properties of Zirconium Nitride
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhaowei Liu其他文献

Boron nitride adsorbents with sea urchin‐like structures for enhanced adsorption performance
具有海胆状结构的氮化硼吸附剂可增强吸附性能
Large spin-to-charge conversion in ultrathin gold-silicon multilayers
超薄金硅多层膜中的大自旋电荷转换
  • DOI:
    10.1103/physrevmaterials.5.064410
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    M. E. El Hadri;Jonathan Gibbons;Yuxuan Xiao;H. Ren;H. Arava;Yuzi Liu;Zhaowei Liu;A. Petford;A. Hoffmann;E. Fullerton
  • 通讯作者:
    E. Fullerton
Real-Time, Inexpensive, and Portable Measurement of Water Surface Velocity through Smartphone
通过智能手机实时、廉价且便携式地测量水面速度
  • DOI:
    10.3390/w12123358
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Tong Yang;Zhaowei Liu;Yongcan Chen;Yang Yu
  • 通讯作者:
    Yang Yu
Evolutionary affinities of species assigned toLipomyces andMyxozyma estimated from ribosomal RNA sequence divergence
根据核糖体 RNA 序列差异估计属于脂酵母属和粘酶属的物种的进化亲和力
  • DOI:
  • 发表时间:
    1990
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    C. Kurtzman;Zhaowei Liu
  • 通讯作者:
    Zhaowei Liu
Phylogenetic relationships among species ofWilliopsis andSaturnospora gen. nov. as determined from partial rRNA sequences
Williopsis 和 Saturnospora gen 物种之间的系统发育关系。
  • DOI:
  • 发表时间:
    1991
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhaowei Liu;C. Kurtzman
  • 通讯作者:
    C. Kurtzman

Zhaowei Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhaowei Liu', 18)}}的其他基金

Equipment: MRI: Track # 2 Development of a high-speed super-resolution stimulated Raman scattering (SRS) microscope
设备: MRI:轨道
  • 批准号:
    2320437
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
OP: Quantum Hyperbolic Metamaterials: New Sciences and Applications
OP:量子双曲超材料:新科学与应用
  • 批准号:
    1610538
  • 财政年份:
    2016
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Optically Tweezered Localized Plasmonic Structured Illumination Microscopy (OT-LPSIM) for Ultrafast Super Resolution Bio-imaging
用于超快超分辨率生物成像的光镊局部等离子体结构照明显微镜 (OT-LPSIM)
  • 批准号:
    1604216
  • 财政年份:
    2016
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
High Speed Plasmonic Structured Illumination Microscopy
高速等离子体结构照明显微镜
  • 批准号:
    0969405
  • 财政年份:
    2010
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant

相似国自然基金

单分子表面增强荧光
  • 批准号:
    10874233
  • 批准年份:
    2008
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Design and fabrication of a hybrid metamaterial scanning probe for tunable tip-enhanced nanospectroscopy
用于可调谐尖端增强纳米光谱的混合超材料扫描探针的设计和制造
  • 批准号:
    23K13640
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Multimodal Label-Free Nanosensor for Single Virus Characterization and Content Analysis
用于单一病毒表征和内容分析的多模式无标记纳米传感器
  • 批准号:
    10641529
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
Next-generation optical nanoprobes: From quantum biosensing to cellular monitoring
下一代光学纳米探针:从量子生物传感到细胞监测
  • 批准号:
    10622691
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
UV Plasmon-Enhanced Chiroptical Spectroscopy of Membrane-Binding Proteins
膜结合蛋白的紫外等离子增强手性光谱
  • 批准号:
    10680969
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
A miniaturized neural network enabled nanoplasmonic spectroscopy platform for label-free cancer detection in biofluids
微型神经网络支持纳米等离子体光谱平台,用于生物流体中的无标记癌症检测
  • 批准号:
    10658204
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
Ultrasensitive Point of Care Antigen Test for Detection of Neisseria Gonorrhoeae Using Plasmonic Flours
使用等离子面粉检测淋病奈瑟菌的超灵敏护理点抗原测试
  • 批准号:
    10726196
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
Metasurface enhanced and machine learning aided spectrochemical liquid biopsy
超表面增强和机器学习辅助光谱化学液体活检
  • 批准号:
    10647397
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
Multiplex Hybridization Colorimetric Sensor for Wild Type and Variant RNA Biomarkers
用于野生型和变异 RNA 生物标志物的多重杂交比色传感器
  • 批准号:
    10580293
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
Nanoplasmonic Spatiotemporal Imaging of Single-Cell Protein Secretion and Intercellular Communication
单细胞蛋白质分泌和细胞间通讯的纳米等离子体时空成像
  • 批准号:
    10723157
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
Regulation of Hippocampal Neurogenesis and Behavior by Noggin
Noggin 对海马神经发生和行为的调节
  • 批准号:
    10655940
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了