Solving Multiscale Problems and Data Classification with Subsampled Data by Integrating Partial Differential Equation Analysis with Data Science
通过将偏微分方程分析与数据科学相结合,利用二次采样数据解决多尺度问题和数据分类
基本信息
- 批准号:1912654
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In many practical applications, one often needs to provide solutions to quantities of interest to a large-scale problem but with only subsampled data and partial information of the physical model. Existing computational solvers cannot be used directly for this purpose. On the other hand, many powerful techniques have been developed in data science to represent and compress data for useful information with extreme efficiency and low computational complexities. A crucial factor for the success of these methods is to exploit some special features in these high-dimensional data. The purpose of this project is to integrate physical models with data science to develop a new generation of computational methods that can solve large-scale physical or data science problems using only subsampled data and partial knowledge of the physical model. The mathematical analysis will help reveal certain important solution structures so that one can use techniques from data science to give accurate approximations for those quantities of interest. Without identifying these special solution structures and using the physical model as a constraint, the current techniques from data science cannot be used directly to achieve PI's goal. This project can have a substantial impact for the computational science and data science communities, for national technology and society. Additional impact will be the involvement of graduate students. This research provides a solid training in mathematical analysis, physical modeling, and data science. The interdisciplinary training they receive in this project will be very important for their future careers in mathematics and science. The recent advances in data science offer tremendous opportunities for computational sciences. A key to the success in data science is to exploit some special features in the high-dimensional data. Traditional PDE solvers have not taken full advantage of the special solution structures. PDE analysis and data science complement each other. PDE analysis can identify some important solution structures that can help the PI to design a more effective deep generative network to solve the physical problem. Without the guidance from the PDE analysis, naive application of current machine learning algorithms to multiscale problems would fail. The solution of the nonconvex optimization problem can easily get stuck in local minimum and may converge to the wrong solution. The PI will identify some key ingredients that would make such integration successful, investigate what type of PDEs can be compressed and what algorithms can be used to approximate quantities of interest with a small percentage of subsampled data and partial knowledge of the physical model. This research will also provide valuable theoretical understanding of some deep learning methods for solving multiscale problems. The PI will consider both inverse and forward problems. For the forward problem, he will develop a novel multiscale method based on subsampled data to reconstruct the solution with guaranteed accuracy. For the inverse problem, the PI will post it as a Bayesian inverse problem and use Deep Generative Networks. An essential ingredient in this approach is to introduce a novel multiscale invertible flow to approximate the transport map, which enables the PI to develop an efficient sampling algorithm to capture the multiple modes in the posterior distribution.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在许多实际应用中,往往需要提供一个大规模的问题,但只有二次采样数据和物理模型的部分信息的感兴趣的量的解决方案。 现有的计算求解器不能直接用于此目的。另一方面,在数据科学中已经开发了许多强大的技术来表示和压缩数据,以获得极高的效率和低计算复杂度的有用信息。这些方法成功的一个关键因素是利用这些高维数据中的一些特殊功能。该项目的目的是将物理模型与数据科学相结合,开发新一代计算方法,仅使用二次采样数据和物理模型的部分知识即可解决大规模物理或数据科学问题。数学分析将有助于揭示某些重要的解决方案结构,以便人们可以使用数据科学技术来为这些感兴趣的量提供准确的近似值。如果不识别这些特殊的解决方案结构并使用物理模型作为约束,当前的数据科学技术就无法直接用于实现PI的目标。该项目将对计算科学和数据科学界、国家技术和社会产生重大影响。其他影响将是研究生的参与。这项研究提供了数学分析,物理建模和数据科学的坚实训练。他们在这个项目中接受的跨学科培训将对他们未来的数学和科学事业非常重要。 数据科学的最新进展为计算科学提供了巨大的机会。数据科学成功的一个关键是利用高维数据中的一些特殊特征。传统的偏微分方程求解器没有充分利用特殊的解决方案结构。PDE分析和数据科学相辅相成。PDE分析可以识别一些重要的解决方案结构,这些结构可以帮助PI设计更有效的深度生成网络来解决物理问题。如果没有PDE分析的指导,当前机器学习算法在多尺度问题上的天真应用将会失败。非凸优化问题的解很容易陷入局部极小值,并可能收敛到错误的解。PI将确定一些关键因素,使这种集成成功,调查什么类型的偏微分方程可以被压缩,什么算法可以用来近似感兴趣的数量与一小部分的二次采样数据和物理模型的部分知识。这项研究还将为解决多尺度问题的一些深度学习方法提供有价值的理论理解。PI将考虑逆问题和正问题。对于正问题,他将开发一种基于子采样数据的新型多尺度方法,以保证精度的方式重建解决方案。 对于逆问题,PI将其作为贝叶斯逆问题发布,并使用深度生成网络。这种方法的一个重要组成部分是引入一种新的多尺度可逆流来近似运输地图,这使得PI能够开发一种有效的采样算法来捕获后验分布中的多种模式。该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持的。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the Finite Time Blowup of the De Gregorio Model for the 3D Euler Equations
- DOI:10.1002/cpa.21991
- 发表时间:2019-05
- 期刊:
- 影响因子:3
- 作者:Jiajie Chen;T. Hou;De Huang
- 通讯作者:Jiajie Chen;T. Hou;De Huang
Multiscale Invertible Generative Networks for High-Dimensional Bayesian Inference
- DOI:
- 发表时间:2021-05
- 期刊:
- 影响因子:0
- 作者:Shumao Zhang;Pengchuan Zhang;T. Hou
- 通讯作者:Shumao Zhang;Pengchuan Zhang;T. Hou
Exponential convergence of Sobolev gradient descent for a class of nonlinear eigenproblems
- DOI:10.4310/cms.2022.v20.n2.a4
- 发表时间:2019-12
- 期刊:
- 影响因子:0
- 作者:Ziyun Zhang
- 通讯作者:Ziyun Zhang
On the Slightly Perturbed De Gregorio Model on $$S^1$$
- DOI:10.1007/s00205-021-01685-w
- 发表时间:2020-10
- 期刊:
- 影响因子:2.5
- 作者:Jiajie Chen
- 通讯作者:Jiajie Chen
Multiscale Elliptic PDE Upscaling and Function Approximation via Subsampled Data
- DOI:10.1137/20m1372214
- 发表时间:2022-02
- 期刊:
- 影响因子:0
- 作者:Yifan Chen;T. Hou
- 通讯作者:Yifan Chen;T. Hou
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Hou其他文献
On the stability of the unsmoothed Fourier method for hyperbolic equations
- DOI:
10.1007/s002110050019 - 发表时间:
1994-02-01 - 期刊:
- 影响因子:2.200
- 作者:
Jonathan Goodman;Thomas Hou;Eitan Tadmor - 通讯作者:
Eitan Tadmor
On DoF Conservation in MIMO Interference Cancellation Based on Signal Strength in the Eigenspace
基于特征空间信号强度的MIMO干扰消除中自由度守恒
- DOI:
10.1109/tmc.2021.3126449 - 发表时间:
2023 - 期刊:
- 影响因子:7.9
- 作者:
Yongce Chen;Shaoran Li;Chengzhang Li;Huacheng Zeng;Brian Jalaian;Thomas Hou;Wenjing Lou - 通讯作者:
Wenjing Lou
Minimizing Age of Information Under General Models for IoT Data Collection
最小化物联网数据收集通用模型下的信息年龄
- DOI:
10.1109/tnse.2019.2952764 - 发表时间:
2020 - 期刊:
- 影响因子:6.6
- 作者:
Chengzhang Li;Shaoran Li;Yongce Chen;Thomas Hou;Wenjing Lou - 通讯作者:
Wenjing Lou
On the performance of MIMO-based ad hoc networks under imperfect CSI
不完善CSI下基于MIMO的自组织网络性能研究
- DOI:
10.1109/milcom.2008.4753523 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Jia Liu;Thomas Hou - 通讯作者:
Thomas Hou
Thomas Hou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Hou', 18)}}的其他基金
Analysis of Singularity Formation in Three-Dimensional Euler Equations and Search for Potential Singularities in Navier-Stokes Equations
三维欧拉方程奇异性形成分析及纳维-斯托克斯方程潜在奇异性搜索
- 批准号:
2205590 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
A Computer-Assisted Analysis Framework for Studying Finite Time Singularities of the 3D Euler Equations and Related Models
用于研究 3D 欧拉方程及相关模型的有限时间奇异性的计算机辅助分析框架
- 批准号:
1907977 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
NeTS: Small: Smart Interference Management for Wireless Internet of Things
NetS:小型:无线物联网的智能干扰管理
- 批准号:
1617634 - 财政年份:2016
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Investigating Potential Singularities in the Euler and Navier-Stokes Equations Using an Integrated Analytical and Computational Approach
使用综合分析和计算方法研究欧拉和纳维-斯托克斯方程中的潜在奇点
- 批准号:
1613861 - 财政年份:2016
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Cognitive Green Building: A Holistic Cyber-Physical Analytic Paradigm for Energy Sustainability
CPS:协同:协作研究:认知绿色建筑:能源可持续性的整体网络物理分析范式
- 批准号:
1446478 - 财政年份:2015
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
NeTS: JUNO: Cognitive Security: A New Approach to Securing Future Large Scale and Distributed Mobile Applications
NetS:JUNO:认知安全:保护未来大规模分布式移动应用程序的新方法
- 批准号:
1405747 - 财政年份:2014
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Data-Driven Time-Frequency Analysis via Nonlinear Optimization
通过非线性优化进行数据驱动的时频分析
- 批准号:
1318377 - 财政年份:2013
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities, mixing and long time behavior in nonlinear evolution
FRG:协作研究:非线性演化中的奇异性、混合和长期行为
- 批准号:
1159138 - 财政年份:2012
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CSR: Small: Collaborative Research: Towards User Privacy in Outsourced Cloud Data Services
CSR:小型:协作研究:在外包云数据服务中实现用户隐私
- 批准号:
1217889 - 财政年份:2012
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Transparent Coexistence for Multi-Hop Secondary Cognitive Radio Networks: Theoretical Foundation, Algorithms, and Implementation
多跳辅助认知无线电网络的透明共存:理论基础、算法和实现
- 批准号:
1247830 - 财政年份:2012
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似海外基金
Robust and Efficient Numerical Methods for Wave Equations in the Time Domain: Nonlinear and Multiscale Problems
时域波动方程的鲁棒高效数值方法:非线性和多尺度问题
- 批准号:
2309687 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Temporal Splitting Methods for Multiscale Problems
多尺度问题的时间分裂方法
- 批准号:
2208498 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
RUI: Multiscale Methods, Singular Limits, and Spectral Problems Related to Materials Science
RUI:与材料科学相关的多尺度方法、奇异极限和谱问题
- 批准号:
2110036 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Simulation and analysis of temporal multiscale problems with partial differential equations
偏微分方程时态多尺度问题的模拟与分析
- 批准号:
411046898 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Research Grants
Multiscale control concepts for transport-dominated problems
针对运输主导问题的多尺度控制概念
- 批准号:
423615040 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Priority Programmes
Sub-Linear Complexity Methods for Multiscale Problems Without Scale Separation
无尺度分离多尺度问题的次线性复杂度方法
- 批准号:
1912999 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
An Optimal Transport Based Multiscale Method for Inverse Problems
基于最优传输的反问题多尺度方法
- 批准号:
1913129 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
A New Multiscale Framework for Hyperbolic Problems
双曲线问题的新多尺度框架
- 批准号:
1913209 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Numerical Methods for Multiscale Inverse Problems and Applications to Sonar Imaging
多尺度反问题的数值方法及其在声纳成像中的应用
- 批准号:
1720306 - 财政年份:2017
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Asynchronous, Parallel-Adaptive Solution of Extreme Multiscale Problems in Seismology
SPX:协作研究:地震学中极端多尺度问题的异步、并行自适应解决方案
- 批准号:
1725544 - 财政年份:2017
- 资助金额:
$ 25万 - 项目类别:
Standard Grant