Data-Driven Time-Frequency Analysis via Nonlinear Optimization
通过非线性优化进行数据驱动的时频分析
基本信息
- 批准号:1318377
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-12-01 至 2017-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This investigator proposes to develop a new data-driven time-frequency analysis method to study nonlinear and non-stationary data. The key idea is to look for the sparsest time-frequency representation of a signal over the largest possible dictionary using nonlinear optimization. Such a method is motivated by physical applications and the need to extract instantaneous frequency and trend from multiscale data arising from many scientific and engineering applications. Although several methods have been introduced to extract instantaneous frequency from a multiscale signal, these methods suffer from various limitations and do not have a solid mathematical foundation. The data-driven time-frequency analysis method developed by this investigator and his colleagues provides a mathematically rigorous definition of instantaneous frequency. This investigator and his colleagues have developed an efficient nonlinear matching pursuit method based on L1-regularized nonlinear least squares to decompose the signal. This method can be used to extract physically meaningful information of the signal such as instantaneous frequency and trend. The preliminary results show that this method can decompose a wide range of physical signals accurately and efficiently. Applications of this method to some real world data from geo-science and biomedical applications have led to some new discoveries. One of the main objectives of this proposal is to carry out a rigorous convergence study of this method and apply it to solve some challenging real world problems in biomedical and geo-science applications. Developing effective data analysis methods is an important path to understand some hidden patterns such as trend and cycles from the massive amount of data. So far, most data analysis methods use a predetermined basis to process data. Most of these methods can handle only linear and stationary data. To better understand the physical mechanisms hidden in data, one needs to develop effective methods that can handle the non-stationarity and nonlinearity of the data. Such methods require the use of a data-driven basis that is adaptive to the data instead of being determined a priori. The data-driven time-frequency method developed by this investigator and his colleagues has a solid mathematical foundation and uses a novel nonlinear optimization technique. Application of this method to the 9 year AMSU data over tropical oceans has led to the discovery of a new near-annual trend. This method has been applied to analyze blood pressure wave data, leading to a completely new way of diagnosing patients with cardiovascular diseases. The proposed method could provide a completely new way to analyze real world data. The proposed research will help train students and postdocs in this emerging research area. The knowledge, techniques and tools developed in this project will be disseminated through publishing in the open literature, and making available as open-source the software tools that are developed.
本文提出了一种新的数据驱动的时频分析方法来研究非线性和非平稳数据。其核心思想是使用非线性优化在尽可能大的字典上寻找信号的稀疏时频表示。这种方法的动机是物理应用和需要提取瞬时频率和趋势从多尺度数据产生的许多科学和工程应用。虽然已经引入了几种方法来从多尺度信号中提取瞬时频率,但这些方法受到各种限制,并且没有坚实的数学基础。由该研究者及其同事开发的数据驱动的时频分析方法提供了瞬时频率的数学严格定义。本文提出了一种基于L1正则化非线性最小二乘的非线性匹配追踪方法。该方法可用于提取信号的瞬时频率、瞬时趋势等有物理意义的信息。初步结果表明,该方法能够准确、高效地分解大范围的物理信号。将该方法应用于地球科学和生物医学应用中的一些真实的世界数据,得到了一些新的发现。该建议的主要目标之一是对该方法进行严格的收敛性研究,并将其应用于解决生物医学和地球科学应用中的一些具有挑战性的真实的世界问题。开发有效的数据分析方法是从海量数据中了解趋势、周期等隐藏模式的重要途径。到目前为止,大多数数据分析方法都使用预定的基础来处理数据。这些方法中的大多数只能处理线性和静态数据。为了更好地理解隐藏在数据中的物理机制,人们需要开发有效的方法来处理数据的非平稳性和非线性。这种方法需要使用一种数据驱动的基础,这种基础适应于数据,而不是事先确定的。由该研究者及其同事开发的数据驱动的时频方法具有坚实的数学基础,并使用了一种新颖的非线性优化技术。应用这种方法对9年的AMSU资料在热带海洋导致了一个新的近年度趋势的发现。该方法已被应用于分析血压波数据,导致一个全新的方式诊断患者的心血管疾病。该方法为分析真实的世界数据提供了一种全新的方法。拟议的研究将有助于培养学生和博士后在这个新兴的研究领域。将通过在公开文献中发表和将开发的软件工具作为开放源码提供,传播本项目开发的知识、技术和工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Hou其他文献
On the stability of the unsmoothed Fourier method for hyperbolic equations
- DOI:
10.1007/s002110050019 - 发表时间:
1994-02-01 - 期刊:
- 影响因子:2.200
- 作者:
Jonathan Goodman;Thomas Hou;Eitan Tadmor - 通讯作者:
Eitan Tadmor
On DoF Conservation in MIMO Interference Cancellation Based on Signal Strength in the Eigenspace
基于特征空间信号强度的MIMO干扰消除中自由度守恒
- DOI:
10.1109/tmc.2021.3126449 - 发表时间:
2023 - 期刊:
- 影响因子:7.9
- 作者:
Yongce Chen;Shaoran Li;Chengzhang Li;Huacheng Zeng;Brian Jalaian;Thomas Hou;Wenjing Lou - 通讯作者:
Wenjing Lou
Minimizing Age of Information Under General Models for IoT Data Collection
最小化物联网数据收集通用模型下的信息年龄
- DOI:
10.1109/tnse.2019.2952764 - 发表时间:
2020 - 期刊:
- 影响因子:6.6
- 作者:
Chengzhang Li;Shaoran Li;Yongce Chen;Thomas Hou;Wenjing Lou - 通讯作者:
Wenjing Lou
On the performance of MIMO-based ad hoc networks under imperfect CSI
不完善CSI下基于MIMO的自组织网络性能研究
- DOI:
10.1109/milcom.2008.4753523 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Jia Liu;Thomas Hou - 通讯作者:
Thomas Hou
Thomas Hou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Hou', 18)}}的其他基金
Analysis of Singularity Formation in Three-Dimensional Euler Equations and Search for Potential Singularities in Navier-Stokes Equations
三维欧拉方程奇异性形成分析及纳维-斯托克斯方程潜在奇异性搜索
- 批准号:
2205590 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Solving Multiscale Problems and Data Classification with Subsampled Data by Integrating Partial Differential Equation Analysis with Data Science
通过将偏微分方程分析与数据科学相结合,利用二次采样数据解决多尺度问题和数据分类
- 批准号:
1912654 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
A Computer-Assisted Analysis Framework for Studying Finite Time Singularities of the 3D Euler Equations and Related Models
用于研究 3D 欧拉方程及相关模型的有限时间奇异性的计算机辅助分析框架
- 批准号:
1907977 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
NeTS: Small: Smart Interference Management for Wireless Internet of Things
NetS:小型:无线物联网的智能干扰管理
- 批准号:
1617634 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Investigating Potential Singularities in the Euler and Navier-Stokes Equations Using an Integrated Analytical and Computational Approach
使用综合分析和计算方法研究欧拉和纳维-斯托克斯方程中的潜在奇点
- 批准号:
1613861 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Cognitive Green Building: A Holistic Cyber-Physical Analytic Paradigm for Energy Sustainability
CPS:协同:协作研究:认知绿色建筑:能源可持续性的整体网络物理分析范式
- 批准号:
1446478 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
NeTS: JUNO: Cognitive Security: A New Approach to Securing Future Large Scale and Distributed Mobile Applications
NetS:JUNO:认知安全:保护未来大规模分布式移动应用程序的新方法
- 批准号:
1405747 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities, mixing and long time behavior in nonlinear evolution
FRG:协作研究:非线性演化中的奇异性、混合和长期行为
- 批准号:
1159138 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CSR: Small: Collaborative Research: Towards User Privacy in Outsourced Cloud Data Services
CSR:小型:协作研究:在外包云数据服务中实现用户隐私
- 批准号:
1217889 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Transparent Coexistence for Multi-Hop Secondary Cognitive Radio Networks: Theoretical Foundation, Algorithms, and Implementation
多跳辅助认知无线电网络的透明共存:理论基础、算法和实现
- 批准号:
1247830 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
相似海外基金
Performance maximization of finite-time and repetitive movement based on data driven controller design approaches
基于数据驱动控制器设计方法的有限时间和重复运动的性能最大化
- 批准号:
23K03909 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developing a data-driven, real-time electron microscopy method toward interpreting plastic deformation and fracture mechanisms of structural materials in sub-microscopic level.
开发一种数据驱动的实时电子显微镜方法,以解释亚微观水平结构材料的塑性变形和断裂机制。
- 批准号:
23H00238 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Data-driven iterative learning control for continuous-time systems
连续时间系统的数据驱动迭代学习控制
- 批准号:
2891700 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Studentship
Data-driven prediction of time-response of control system with a certain controller using one-shot data
使用一次性数据对具有特定控制器的控制系统的时间响应进行数据驱动预测
- 批准号:
22K04174 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
DART (Data-driven Ai for Real-time b2b Targeting)
DART(用于实时 B2B 定位的数据驱动人工智能)
- 批准号:
10034864 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Collaborative R&D
Data-driven decision-making for stormwater management ponds using real-time monitoring
使用实时监控对雨水管理池进行数据驱动的决策
- 批准号:
578511-2022 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Alliance Grants
SHF:Small: Data-Driven Thermal Monitoring and Run-Time Management for Manycore Processor and Chiplet Designs
SHF:Small:适用于多核处理器和小芯片设计的数据驱动热监控和运行时管理
- 批准号:
2113928 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
UK Fashion & Textiles: Data-driven platform, enabling manufacturing supply chain real-time decision-making, effective track & trace & sustainability
英国时尚
- 批准号:
92979 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Collaborative R&D
Collaborative Research: Real-Time Data-Driven Anomaly Detection for Complex Networks
协作研究:复杂网络的实时数据驱动异常检测
- 批准号:
2040500 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Data-Driven Model Reduction and Real-Time Estimation and Control of Coherent Structures in Turbulent Flows
湍流中相干结构的数据驱动模型简化和实时估计与控制
- 批准号:
2052811 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant