Investigating Potential Singularities in the Euler and Navier-Stokes Equations Using an Integrated Analytical and Computational Approach

使用综合分析和计算方法研究欧拉和纳维-斯托克斯方程中的潜在奇点

基本信息

  • 批准号:
    1613861
  • 负责人:
  • 金额:
    $ 49.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

Navier-Stokes equations are used to model ocean currents, weather patterns, and turbulent flows behind a plane or ship. Mathematicians and physicists believe that an explanation for and the prediction of both breezes and turbulence can be found through an understanding of solutions to Navier-Stokes equations. Though most physicists and engineers believe that the smooth solutions of the Navier-Stokes equations cannot break down without external forcing, currently there is no theoretical guarantee that this is indeed the case. The investigator's recent study with collaborators indicates that the Euler equations, which correspond to the inviscid limit of the Navier-Stokes equations, could develop a catastrophic behavior if one starts with a highly symmetric but perfectly smooth flow. Such a scenario is like a perfect storm in which all things that could potentially go wrong indeed go wrong. A potentially singular behavior of the fluid flows described by the Navier-Stokes equations could negate the ability to forecast the behavior of fluid systems accurately. The investigator studies conditions under which the Euler or Navier-Stokes equations may develop a potentially singular behavior. The ultimate goal of the project is to develop effective analytical and computational tools that enhance our ability to model and predict various complex fluid flows, such as those arising in engineering, oceanography, and weather forecasting. Graduate students and postdoctoral scholars are included in the work of the project. The interdisciplinary training they receive is important for their future careers in mathematics and science.The project seeks to understand whether the incompressible 3D Euler and Navier-Stokes equations could develop a finite-time singularity from a smooth initial condition with finite energy. A major approach of the project is to study the spatial profiles in potential self-similar singularities of the solutions, which can be obtained by solving a nonlinear eigenvalue problem. A notable aspect of the project is the combination of highly resolved numerical simulations and rigorous mathematical analysis. Numerical computations are first conducted to detect potential finite-time singularity scenarios and gain primary understanding about the singularity formation. Then the evolution equations of spatial profiles in the solutions are studied using a dynamic rescaling formulation both analytically and numerically. The theoretical framework developed in this project introduces an appropriate notion of stability for the self-similar profiles through the dynamic rescaling formulation. Stability of the numerically constructed self-similar profile is a crucial step in constructing a finite-time singularity of the Euler equations. Another interesting aspect of the project is that the dynamic rescaling formulation provides a natural framework to investigate whether the finite-time singularity in the Euler equations may lead to a potential finite-time singularity of the Navier-Stokes equations for certain type of singularities. The stability of self-similar profiles of the Euler equations again plays a crucial role in this study.
Navier-Stokes方程用于模拟洋流、天气模式和飞机或船只后面的湍流。 数学家和物理学家认为,通过理解纳维-斯托克斯方程的解,可以找到对微风和湍流的解释和预测。 虽然大多数物理学家和工程师认为,如果没有外力,Navier-Stokes方程的光滑解就不能分解,但目前还没有理论保证这确实是事实。 研究人员最近与合作者的研究表明,如果从高度对称但完全光滑的流动开始,对应于Navier-Stokes方程无粘极限的欧拉方程可能会产生灾难性的行为。 这种情况就像一场完美风暴,所有可能出错的事情都真的出错了。 由Navier-Stokes方程描述的流体流动的潜在奇异行为可以否定准确预测流体系统的行为的能力。 研究人员研究的条件下,欧拉或Navier-Stokes方程可能会开发一个潜在的奇异行为。 该项目的最终目标是开发有效的分析和计算工具,提高我们建模和预测各种复杂流体流动的能力,例如工程,海洋学和天气预报中出现的流体流动。 研究生和博士后学者都包括在该项目的工作。 他们接受的跨学科培训对他们未来的数学和科学事业非常重要。该项目旨在了解不可压缩的3D Euler和Navier-Stokes方程是否可以从具有有限能量的光滑初始条件发展出有限时间奇点。 该项目的一个主要方法是研究潜在的自相似奇异性的解决方案,这可以通过解决一个非线性特征值问题的空间轮廓。 该项目的一个值得注意的方面是高度分辨率的数值模拟和严格的数学分析相结合。 数值计算首先进行检测潜在的有限时间奇异性的情况下,并获得有关奇异性的形成的初步了解。 然后,空间轮廓的演变方程的解决方案进行了研究,使用动态重标度制定的解析和数值。 在这个项目中开发的理论框架引入了一个适当的概念,通过动态重标度制定的自相似配置文件的稳定性。 数值构造的自相似轮廓的稳定性是构造欧拉方程有限时间奇异性的关键步骤。 该项目的另一个有趣的方面是,动态重标度公式提供了一个自然的框架,以调查是否有限时间奇点在欧拉方程可能导致一个潜在的有限时间奇点的Navier-Stokes方程的某些类型的奇点。 欧拉方程的自相似轮廓的稳定性再次发挥了至关重要的作用,在这项研究中。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A minimal mechanosensing model predicts keratocyte evolution on flexible substrates
  • DOI:
    10.1098/rsif.2020.0175
  • 发表时间:
    2018-03
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Zhiwen Zhang;P. Rosakis;T. Hou;G. Ravichandran
  • 通讯作者:
    Zhiwen Zhang;P. Rosakis;T. Hou;G. Ravichandran
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Hou其他文献

On the stability of the unsmoothed Fourier method for hyperbolic equations
  • DOI:
    10.1007/s002110050019
  • 发表时间:
    1994-02-01
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Jonathan Goodman;Thomas Hou;Eitan Tadmor
  • 通讯作者:
    Eitan Tadmor
On DoF Conservation in MIMO Interference Cancellation Based on Signal Strength in the Eigenspace
基于特征空间信号强度的MIMO干扰消除中自由度守恒
  • DOI:
    10.1109/tmc.2021.3126449
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Yongce Chen;Shaoran Li;Chengzhang Li;Huacheng Zeng;Brian Jalaian;Thomas Hou;Wenjing Lou
  • 通讯作者:
    Wenjing Lou
Minimizing Age of Information Under General Models for IoT Data Collection
最小化物联网数据收集通用模型下的信息年龄
On the performance of MIMO-based ad hoc networks under imperfect CSI
不完善CSI下基于MIMO的自组织网络性能研究

Thomas Hou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Hou', 18)}}的其他基金

Analysis of Singularity Formation in Three-Dimensional Euler Equations and Search for Potential Singularities in Navier-Stokes Equations
三维欧拉方程奇异性形成分析及纳维-斯托克斯方程潜在奇异性搜索
  • 批准号:
    2205590
  • 财政年份:
    2022
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Continuing Grant
Solving Multiscale Problems and Data Classification with Subsampled Data by Integrating Partial Differential Equation Analysis with Data Science
通过将偏微分方程分析与数据科学相结合,利用二次采样数据解决多尺度问题和数据分类
  • 批准号:
    1912654
  • 财政年份:
    2019
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
A Computer-Assisted Analysis Framework for Studying Finite Time Singularities of the 3D Euler Equations and Related Models
用于研究 3D 欧拉方程及相关模型的有限时间奇异性的计算机辅助分析框架
  • 批准号:
    1907977
  • 财政年份:
    2019
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
NeTS: Small: Smart Interference Management for Wireless Internet of Things
NetS:小型:无线物联网的智能干扰管理
  • 批准号:
    1617634
  • 财政年份:
    2016
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Cognitive Green Building: A Holistic Cyber-Physical Analytic Paradigm for Energy Sustainability
CPS:协同:协作研究:认知绿色建筑:能源可持续性的整体网络物理分析范式
  • 批准号:
    1446478
  • 财政年份:
    2015
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
NeTS: JUNO: Cognitive Security: A New Approach to Securing Future Large Scale and Distributed Mobile Applications
NetS:JUNO:认知安全:保护未来大规模分布式移动应用程序的新方法
  • 批准号:
    1405747
  • 财政年份:
    2014
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
Data-Driven Time-Frequency Analysis via Nonlinear Optimization
通过非线性优化进行数据驱动的时频分析
  • 批准号:
    1318377
  • 财政年份:
    2013
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities, mixing and long time behavior in nonlinear evolution
FRG:协作研究:非线性演化中的奇异性、混合和长期行为
  • 批准号:
    1159138
  • 财政年份:
    2012
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
CSR: Small: Collaborative Research: Towards User Privacy in Outsourced Cloud Data Services
CSR:小型:协作研究:在外包云数据服务中实现用户隐私
  • 批准号:
    1217889
  • 财政年份:
    2012
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
Transparent Coexistence for Multi-Hop Secondary Cognitive Radio Networks: Theoretical Foundation, Algorithms, and Implementation
多跳辅助认知无线电网络的透明共存:理论基础、算法和实现
  • 批准号:
    1247830
  • 财政年份:
    2012
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant

相似国自然基金

Transient Receptor Potential 通道 A1在膀胱过度活动症发病机制中的作用
  • 批准号:
    30801141
  • 批准年份:
    2008
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Transformation potential of per- and polyfluoroalkyl substances (PFAS) in drinking water distribution systems
职业:全氟烷基物质和多氟烷基物质 (PFAS) 在饮用水分配系统中的转化潜力
  • 批准号:
    2338480
  • 财政年份:
    2024
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Continuing Grant
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
  • 批准号:
    2409130
  • 财政年份:
    2024
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
I-Corps: Translation Potential of Mechanically Compliant Fracture Fixation Plates for Long Bone Fractures
I-Corps:用于长骨骨折的机械顺应性骨折固定板的平移潜力
  • 批准号:
    2410029
  • 财政年份:
    2024
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
I-Corps: Translation Potential of Rapid In-situ Forming Gel for Local Gene Delivery
I-Corps:快速原位形成凝胶用于局部基因传递的转化潜力
  • 批准号:
    2410778
  • 财政年份:
    2024
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
I-Corps: Translation potential of 3D electronics manufacturing by integrated 3D printing and freeform laser induction
I-Corps:通过集成 3D 打印和自由形式激光感应实现 3D 电子制造的转化潜力
  • 批准号:
    2412186
  • 财政年份:
    2024
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
I-Corps: Translation potential of a tampon-like menstrual cup and applicator system
I-Corps:卫生棉条状月经杯和涂抹器系统的翻译潜力
  • 批准号:
    2413962
  • 财政年份:
    2024
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
I-Corps: Translation potential of stereolithography 3D printing to create soft elastomers
I-Corps:立体光刻 3D 打印制造软弹性体的转化潜力
  • 批准号:
    2414710
  • 财政年份:
    2024
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
I-Corps: Translation Potential of Head Impact Monitoring with Embedded Sensor Technology in Sports Helmets
I-Corps:运动头盔中嵌入式传感器技术的头部碰撞监测的转化潜力
  • 批准号:
    2416207
  • 财政年份:
    2024
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
I-Corps: Translation potential of learning engagement and assessment programs in multi-person virtual reality
I-Corps:多人虚拟现实中学习参与和评估项目的翻译潜力
  • 批准号:
    2417857
  • 财政年份:
    2024
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
I-Corps: Translation Potential of a High Throughput Drug Discovery Platform for Protein Degraders
I-Corps:蛋白质降解剂高通量药物发现平台的转化潜力
  • 批准号:
    2419488
  • 财政年份:
    2024
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了